我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

沙柳液化产物制备硬质聚氨酯泡沫的研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年05期
Page:
141-146
Column:
研究论文
publishdate:
2017-09-30

Article Info:/Info

Title:
Preparation and property of biomass polyurethane rigid foam by liquefaction products of salix
Article ID:
1000-2006(2017)05-0141-06
Author(s):
ZHOU Yu HAN Wang YUAN Dawei AN Zhen*
College of Materials Science and Art Design, lnner Mongolia Agricultural University, Hohhot 010018, China
Keywords:
Keywords:salix liquefaction product organic montmorillonite polyurethane foam
Classification number :
TQ35
DOI:
10.3969/j.issn.1000-2006.201605024
Document Code:
A
Abstract:
【Objective】Foam biomass polyurethane rigid foam(LP-PU)by liquefaction products of salix(LP).【Method】Mix the organic montmorillonite(OMMT)and liquefaction products of salix(LP)under the condition of ultrasonic wave concussion and subsequently put the mixture(LP-OMMT)and isocyanate together to foam. The structure and property of obtained foam were characterized and tested by means of FTIR, XRD, TEM and TG. 【Result】The experimental results indicated that, under ultrasonic wave concussion, the FTIR shows that the addition of OMMT had increased the hydrogen bond index and cohesive energy of foam. It was observed from XRD and TEM images that the layer spacing of OMMT was 5.5 nm and it was more easily to disperse in the form of intercalation and the form of exfoliation. The TG curve of the materials moved to higher temperature and the carbon yield of foam was 38.51%. Therefore, the thermostability value increased. Moreover, the density of foam was 34.9% less than pure foam, while the compression strength almost remained unchanged. The flame retardant property reinforced, as the oxygen index of foam increased to 37.2%.【Conclusion】Intercalated or exfoliated OMMT can be prepared by adding just the right amount, which significantly improved themechanical properties, thermal stability and flame retardance of materials.

References

[1] 许凤, JONES G L L, 孙润仓. 速生灌木沙柳的纤维形态及解剖结构研究[J].林产化学与工业,2006,26(1):91-94. XU F, JONES G L L, SUN R C. Fibre morphology and anatomical structure of sandlive willow(Salix psammophila)[J].Chemistry and Industry of Forest Products,2006,26(1):91-94.
[2] 肖春旺,周广胜. 不同浇水量对毛乌素沙地沙柳幼苗气体交换过程及其光化学效率的影响[J].植物生态学报,2001,25(4):444-450. XIAO C W, ZHOU G S. Effect of different water supply on gas exchange processes and photochemical efficiency in Salix psammophila seedlings in the maowusn sandland[J].Acta Phytoecologica Sinica,2001,25(4):444-450.
[3] 周宇, 安珍. 沙柳材液化的工艺优化及产物分析[J]. 东北林业大学学报, 2015, 43(10): 109-113. ZHOU Y, AN Z.Liquefaction of salix and its products analysis[J].Journal of Northeast Forestry University, 2015, 43(10): 109-113.
[4] 于晓芳,王喜明.有机蒙脱土改性脲醛树脂胶黏剂的制备及结构表征[J].高分子学报, 2014(9): 1286-1291.DOI: 10. 11777/j. issn1000-3304. 2014. 14012. YU X F, WANG X M. Preparation and structure characterization of resins modified with organic montmorillonite[J].Acta Polymerica Sinica,2014(9): 1286-1291.
[5] 沙丰, 马德强, 刘钢,等. 硬泡聚氨酷保温装饰板的开发与性能表征[J].建筑节能, 2010, 38(12):53-57. DOI: 10.3969/j.issn.1673.2010.12.014. SHA F, MA D Q, LIU G, et al. Development and characterization of insulation decorative with rigid polyurethane foam[J].Building Energy Efficiency,2010, 38(12):53-57.
[6] LEI S, GUO Q, ZHANG D, et al. Preparation and properties of the phenolic foams with controllable nanometer pore structure[J].Journal of Applied Polymer Science, 2010, 117(6): 3545-3550.DOI: 10.1002/app.32280.
[7] YANG H, WANG X, YUAN H,et al. Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers[J]. Journal of Polymer Research, 2012, 19(3): 1-10.DOI: 10.1007/s10965-012-9831-7.
[8] 叶美玲,洪金庆,陈翠雪, 等. 聚氨酯/有机蒙脱土纳米硬质泡沫的制备及表征[J]. 高分子材料科学与工程,2013, 29(1):140-143. YE M L, HONG J Q, CHEN C X, et al. Preparation and characterization of polyurethane/organo-montmorillonite nanocomposites[J].Polymeric Materials Science and Engineering, 2013,29(1):140-143.
[9] 夏侯国论,刘伟区,谭建权, 等.有机硅/蒙脱土复合改性聚氨酯弹性体的制备和性能[J]. 高分子学报,2015(4):444-450. XIAHOU G L, LIU W Q, TAN J Q, et al. Preparation and properties of polyurethane elastomer composites modified by polydimethylsiloxane and organic-montmorillonite[J]. Acta Polymerica Sinica, 2015(4): 444-450.
[10] CHEN T K, TIEN Y I, WEI K H.Synthesis and characterization of novel segmented polyurethane/claynanocomposites[J].Polymer, 2000, 41(4): 1345-1353.DOI: org/10.1016/S0032-3861(99)00280-3.
[11] CHEN T K, TIEN Y I, WEI K H.Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly(epsilon-caprolactone)/clay[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(6): 2225-2233.DOI: 10.1002/(SICI)1099-0518(19990701)37:13<2225.
[12] SCHWANNINGER M, RODRIGUES J C, PEREIRA H, et al.Effects of short-time vibratory ball milling on the shape of FTIR spectra of wood and cellulose[J].Vibrational Spectroscopy,2004, 36(1):23-40.DOI:10.1016/j.vibspec.2004.02.003 Get rights and content.
[13] XU Z, TANG X, GU A, et al.Novel preparation andmechanical properties of rigid polyurethane foams/organoclaynanocomposites.[J].Journal of Applied Polymer Science, 2007, 106(1): 439-447.DOI: 10.1002/app.26497.
[14] TIEN Y I, WEI K H. Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios[J]. Polymer, 2001, 42(7): 3213-3221.DOI:org/10.1016/S0032-3861(00)00729.
[15] KUAN H C, MA C C M, CHUANG W P, et al. Hydrogen bonding, mechanical properties, and surface morphology of clay/waterborne polyurethane nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 43(1): 1-12.DOI: 10.1002/polb.20256.
[16] KE Y, LONG C, QI Z. Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites[J]. Journal of Applied Polymer Science, 1999, 71(7): 1139-1146.DOI: 10.1002/(SICI)1097-4628(19990214)71:7<1139::AID-APP12>3.0.CO; 2-E.
[17] 薛振华, 赵广杰. 蒙脱土/木材复合材料的结晶性能[J]. 北京林业大学学报, 2008, 30(1): 114-118. XUE Z H, ZHAO G J. Crystal properties of montmorilonite-wood composite[J]. Journal of Beijing Forestry University, 2008, 30(1): 114-118.
[18] XU Z, TANG X, ZHENG J. Thermal stability and flame retardancy of rigid polyurethane foams/organoclay nanocomposites[J]. Polymer-Plastics Technology and Engineering, 2008, 47(11): 1136-1141.DOI:org/10.1080/03602550802391607.
[19] 蔡荣欣, 张志勇. 聚氨酯/蒙脱土纳米复合材料合成和性能(Ⅰ)[J]. 上海化工, 2003, 28(3): 16-20. CAI R X, ZHANG Z Y. Preparation and properties of polyurethane/montmorillonite nanocomposite(Ⅰ)[J]. Shanghai Chemical Industry, 2003, 28(3): 16-20.
[20] 蔡荣欣, 张志勇. 聚氨酯/蒙脱土纳米复合材料合成和性能(Ⅱ)[J]. 上海化工, 2002,27: 147-153. CAI R X, ZHANG Z Y. Preparation and properties of polyurethane/montmorillonite nanocomposite(Ⅱ)[J]. Shanghai Chemical Industry, 2002,27: 147-153.
[21] 刘鹏辉, 杨宜谦, 姚京川. 多孔吸声材料的吸声特性研究[J]. 噪声与振动控制, 2011, 31(2): 123-126. LIU P H, YANG Y Q, YAO J C. Study on absorption property of porous sound-absorbing materials[J]. Noise and Vibration Control, 2011, 31(2): 123-126.
[22] 马玉峰, 王春鹏, 储富祥. 氯化亚铜对阻燃体系复合酚醛泡沫性能的影响[J].南京林业大学学报(自然科学版), 2016, 40(2): 132-138. DOI: 10.3969/j.issn.1000-2006.2016.02.022. MA Y F, WANG C P, CHU F X. Effect of cuprous chloride on properties of flame retardant system composite phenolic foams[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 132-138.
[23] 王茜, 李贺军, 张雨雷, 等. 蒙脱土改性炭泡沫复合材料[J]. 新型炭材料, 2014, 29(2): 143-148. WANG Q, LI H J, ZHANG Y L, et al. Preparation of montmorillonite-modified carbon foams[J]. New Carbon Materials, 2014, 29(2): 143-148.
[24] KASHIWAGI T, HARRIS R H, ZHANG X, et al. Flame retardant mechanism of polyamide 6-clay nanocomposites[J]. Polymer, 2004, 45(3): 881-891.DOI: org/10.1016/j.polymer.2003.11.036.

Last Update: 1900-01-01