我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

薄壳山核桃嫁接愈合过程中差异蛋白质的分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年06期
Page:
19-25
Column:
专题报道
publishdate:
2017-11-30

Article Info:/Info

Title:
Analysis of the differential proteins in the graft healing process of pecan(Carya illinoinensis)
Article ID:
1000-2006(2017)06-0019-07
Author(s):
MO Zhenghai HE Haiyang CHEN Wenjing DENG Qiuju PENG Fangren*
Co-Innovation Conter for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:Carya illinoinensis grafting differentially expressed protein two-dimensional electrophoresis
Classification number :
S664; Q816
DOI:
10.3969/j.issn.1000-2006.201703021
Document Code:
A
Abstract:
【Objective】Grafting is an important method for propagating pecan. This paper aimed to reveal the mechanism underlying graft healing on the proteomic level. 【Method】 We investigated the differential proteins in the graft union of pecans at four developmental stages(1, 6, 10 and 25 days after grafting)based on two-dimensional gel electrophoresis and MALDI-TOF/TOF-MS. 【Result】 In total, 48 differential proteins were identified, and these identified proteins were classified into seven functional categories: energy metabolism, stress and defense responses, cell growth, secondary metabolism, protein synthesis, amino acid metabolism and function unknown. 【Conclusion】Fructose-bisphosphate aldolase, phosphoglycerate kinase, pyruvate decarboxylase and adenosine triphosphatase could provide adequate energy for the graft healing of pecan. Ascorbate peroxidase and peroxiredoxins can eliminate the excessive reactive oxygen species caused by grafting. Soluble inorganic pyrophosphatase may play a role in promoting callus proliferation. Metacaspase and alpha tubulin may be associated with tracheary element differentiation.

References

[1] TOROVAZQUEZ J F, CHAROALONSO M A, PEREZBRICENO F. Fatty acid composition and its relationship with physicochemical properties of pecan(Cary illinoensis)oil[J]. Journal of the American Oil Chemists' Society, 1999, 76(8): 957-965. DOI: 10.1007/s11746-999-0113-4.
[2] YEOMAN M M, BROWN R. Implications of the formation of the graft union for organisation in the intact plant[J]. Annals of Botany, 1976, 40(6): 1265-1276. DOI: 10.1093/oxfordjournals.aob.a085247.
[3] 肖桂山, 杨世杰. 黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J]. 农业生物技术学报, 1995(2): 32-37. DOI: 10.3969/j.issn.1674-7968.1995.02.012. XIAO G S, YANG S J. Appearance of specific proteins during development of Cucumis sativus homograft[J]. Chinese Journal of Agricultural Biotechnology, 1995(2): 32-37.
[4] 冯金玲, 杨志坚, 陈辉. 油茶芽苗砧嫁接口不同发育时期差异蛋白质分析[J]. 应用生态学报, 2012, 23(8): 2055-2061. DOI: 10.13287/j.1001-9332.2012.0285. FENG J L, YANG Z J, CHEN H. Analysis of differential proteins in nurse seed grafted unions of Camellia oleifera at its different developmental stages[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2055-2061.
[5] 宋慧, 张香琴, 应泉盛, 等. 瓜类异属间嫁接亲和/不亲和组合形成过程中特异蛋白的产生[J]. 华北农学报, 2013, 28(2): 20-26. DOI: 10.3969/j.issn.1000-7091.2013.02.004. SONG H, ZHANG X Q, YING Q S, et al. Production of specific proteins during graft compatibility/incompatibility response of heterograft combination of Cucurbitaceae[J]. Acta Agriculturae Boreali-Simica, 2013, 28(2): 20-26.
[6] 姜春宁, 郑彩霞, 包仁艳. 油松胚珠蛋白质提取分离技术的优化[J]. 北京林业大学学报, 2006, 28(4): 96-99. DOI: 10.3321/j.issn:1000-1522.2006.04.018. JIANG C N, ZHENG C X, BAO R Y. Optimization method for the extraction and separation of proteins from ovules of Pinus tabulaeformis Carr.[J]. Journal of Beijing Forestry University, 2006, 28(4): 96-99.
[7] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI: 10.1016/0003-2697(76)90527-3.
[8] HE M, ZHU C, DONG K, et al. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination[J]. BMC Plant Biology, 2015, 15(1): 97. DOI: 10.1186/s12870-015-0471-z.
[9] BEVAN M, BANCROFT I, BENT E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana[J]. Nature, 1998, 391: 485-488. DOI: 10.1038/35140.
[10] QUIMIO C A, TORRIZO L B, SETTER T L, et al. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase[J]. Journal of Plant Physiology, 2000, 156(4): 516-521. DOI: 10.1016/S0176-1617(00)80167-4.
[11] MITTLER R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405-410. DOI: 10.1016/S1360-1385(02)02312-9.
[12] IRISARRI P, BINCZYCKI P, ERREA P, et al. Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development[J]. Journal of Plant Physiology, 2014, 176: 25-35. DOI: 10.1016/j.jplph.2014.10.015.
[13] MA L, WANG Y, LIU W, et al. Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation[J]. Biotechnology Letters, 2014, 36(11): 2331-2341. DOI: 10.1007/s10529-014-1598-y.
[14] CHEN J K, SHEN C R, LIU C L. The characteristics of chitinase expression in Aeromonas schubertii[J]. Applied Biochemistry and Biotechnology, 2014, 172(8): 3827-3834. DOI: 10.1007/s12010-014-0798-1.
[15] FANG W, XIE D, ZHU H, et al. Comparative proteomic analysis of Gossypium thurberi in response to Verticillium dahliae inoculation[J]. International Journal of Molecular Sciences, 2015, 16(10): 25121-25140. DOI: 10.3390/ijms161025121.
[16] VERCAMMEN D, VAN DE COTTE B, DE JAEGER G, et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine[J]. Journal of Biological Chemistry, 2004, 279(44): 45329-45336. DOI: 10.1074/jbc.M406329200.
[17] AN F, LI G, LI Q X, et al. The comparatively proteomic analysis in response to cold stress in Cassava plantlets[J]. Plant Molecular Biology Reporter, 2016, 34(6): 1-16. DOI: 10.1007/s11105-016-0987-x.
[18] HOEBERICHTS F A, WOLTERING E J. Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators[J]. Bioessays, 2003, 25(1): 47-57. DOI: 10.1002/bies.10175.
[19] HE R, DRURY G E, ROTARI V I, et al. Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis[J]. Journal of Biological Chemistry, 2008, 283(2): 774-783. DOI: 10.1074/jbc.M704185200.
[20] SUAREZ M F, FILONOVA L H, SMERTENKO A, et al. Metacaspase-dependent programmed cell death is essential for plant embryogenesis[J]. Current Biology Cb, 2004, 14(9): R339-R340. DOI: 10.1016/j.cub.2004.04.019.
[21] YE Z H, ZHONG R. Molecular control of wood formation in trees[J]. Journal of Experimental Botany, 2015, 66(14): 4119-4131. DOI: 10.1093/jxb/erv081.
[22] CHEN H, XIONG L. Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses[J]. Plant Journal, 2005, 44(3): 396-408. DOI: 10.1111/j.1365-313X.2005.02538.x.
[23] MEREWITZ E B, HUANG B. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis[J]. Journal of Experimental Botany, 2011, 62(15): 5311-5333. DOI: 10.1093/jxb/err166.
[24] JELITTO T, SONNEWALD U, WILLMITZER L, et al. Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol[J]. Planta, 1992, 188(2): 238-244. DOI: 10.1007/BF00216819.
[25] WINKEL-SHIRLEY B. Biosynthesis of flavonoids and effects of stress[J]. Current Opinion in Plant Biology, 2002, 5(3): 218-223. DOI: 10.1016/S1369-5266(02)00256-X.
[26] PINA A, ERREA P. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp.[J]. Journal of Plant Physiology, 2008, 165(7): 705-714. DOI: 10.1016/j.jplph.2007.05.015.
[27] ERREA P. Implications of phenolic compounds in graft incompatibility in fruit tree species[J]. Scientia Horticulturae, 1998, 74(3): 195-205. DOI: 10.1016/S0304-4238(98)00087-9.
[28] PRINSIA B, MUSACCHI S, SERRAB S, et al. Early proteomic changes in pear(Pyrus communis L.)calli induced by co-culture on microcallus suspension of incompatible quince(Cydonia oblonga Mill.)[J]. Scientia Horticulturae, 2015, 194: 337-343. DOI: 10.1016/j.scienta.2015.08.020.

Last Update: 1900-01-01