我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

杉木炭疽菌遗传转化及附着胞发育过程的细胞核行为观察(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年06期
Page:
68-72
Column:
研究论文
publishdate:
2017-11-30

Article Info:/Info

Title:
Efficient genetic transformation and nuclear behavior during the process of appressorial development in Colletotrichum gloeosporioides
Article ID:
1000-2006(2017)06-0068-05
Author(s):
HUANG Lin YANG Jiyun FANG Yulan LI Qiucheng LIANG Yan YE Jianren*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:Colletotrichum gloeosporioides genetic transformation appressorium nuclear degration
Classification number :
S763; Q945.8
DOI:
10.3969/j.issn.1000-2006.201705009
Document Code:
A
Abstract:
【Objective】This study was aimed to establish an efficient genetic transformation system in Colletotrichum gloeosporioides, and to observe the nuclear behavior during the process of appressorial development. 【Method】 Protoplasts were prepared using cell-wall lytic enzymes. Protoplast transformation was mediated by PEG, and the nucleus-specific expression plasmid NL1::GFP with zeocin-resistance gene was transformed into the C. gloeosporioides strain SMCG1#C. During the process of appressorial development, nuclear behavior in the conidia, germ tubes, and appressorium of C. gloeosporioides was observed under a fluorescence microscope. 【Result】Positive C. gloeosporioides transformants expressing NL1::GFP were obtained. Appressorial development in C. gloeosporioides was accompanied by mitosis and cell nuclear transfer. The nuclear in the conidia and germ tubes remained intact without nuclear degration after the appressoria were developed ripely.【Conclusion】 An efficient genetic transformation system was established in C. gloeosporioides. During the process of appressorial development, there were considerable differences in cell-biological characteristics among C. gloeosporioides, Magnaporthe oryzae and C. higginsianum.

References

[1] O’CONNELL R J, THON M R, HACQUARD S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics, 2012, 44(9):1060-1065.DOI:10.1038/ng.2372.
[2] DEAN R, VAN KAN J A L, PRETORIUS Z A, et al. The top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 16(4):414-430.DOI:10.1111/j.1364-3703.
[3] 李传道.杉木疽病的研究Ⅰ:症状和病原的探讨[J].南京林产工业学院学报,1980,4(2):31-38. LI C D. Studies on the anthracnose of Chinese fir I. symptoms and the causal agent[J]. Journal of Nanjing Forestry University, 1980(2):31-38.
[4] 曾思海,黄天章,詹学齐,等.杉木球果炭疽病原菌及其生物学特性的研究[J].福建林业科技,1998,25(2):6-10. ZENG S H, HUANG T Z, ZHAN X Q, et al. Studies on the pathogenic fungi of Cone anthracnose of Cunninghamia lanceolata and on their biological characteristics[J]. Journal of Fujian Forestryence & Technology, 1998,25(2):6-10.
[5] FREY T J, WELDEKIDAN T, COLBERT T, et al. Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola(Ces.)G.W. Wils. using Near-Isogenic maize hybrids[J]. Crop Science, 2011, 51(4):1551-1556.DOI:10.2135/cropsci.2010.10.0613.
[6] HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(24):11281-11284.
[7] HAMER J E, TALBOT N J. Infection-related development in the rice blast fungus Magnaporthe grisea[J]. Current Opinion in Microbiology, 1998, 1(6):693-697.DOI:10.1016/s1369-5274(98)80117-3.
[8] VENEAULT-FOURREY C, BAROOAH M, EGAN M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus[J]. Science, 2006, 312(5773):580-583.DOI:10.1126/science.1124550.
[9] ROBINSON M, SHARON A. Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. aeschynomene by electroporation of germinated conidia[J]. Current Genetics, 1999, 36(1):36(1-2):98-104.DOI:10.1007/s002940050478.
[10] THON M R, NUCKLES E M, VAILLANCOURT L J. Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola[J].Molecular Plant Microbe Interactions, 2000, 13(12):1356-1365.DOI:10.1097/MPMI.2000.13.2.1356.
[11] O’CONNELL R, HERBERT C, SREENIVASAPRASAD S, et al. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant Microbe Interactions, 2004, 17(3):272-282.DOI:10.1094/MPMI.2004.17.3.272.
[12] LIU Z, FRIESEN T L. Polyethylene glycol(PEG)-mediated transformation in filamentous fungal pathogens[J]. Methods in Molecular Biology, 2012, 835:365-375.
[13] 沈慧敏, 李超, 高利, 等. 原生质体法介导真菌遗传转化的研究进展[J]. 植物保护, 2017, 43(2):25-28. SHEN H M, LI C, GAO L, et al. Research progress in transformation of fungi mediated by protoplasts[J]. Plant Protection, 2017, 43(2):25-28.
[14] 孙丹, 张敏, 解长睿, 等. PEG法介导蛹虫草遗传转化体系的建立[J]. 中国生物工程杂志, 2017, 37(4):76-82. SUN D, ZHANG M, XIE C R, et al. Establishment of genetic transformation system of Cordyceps militaris using PEG mediated method[J]. China Biotechnology, 2017, 37(4):76-82.
[15] 李秋成. 希金斯炭疽菌细胞自噬相关家族蛋白的生物学功能研究[D]. 南京:南京林业大学, 2017. LI Q C. Biological function analysis of autophagy-related proteins in Colletotrichum higginsianum [D]. Nanjing: Nanjing Forestry University, 2017.
[16] 李思蒙, 王永林, 黄冬辉, 等. 杨树炭疽病菌原生质体遗传转化的建立及绿色荧光蛋白的表达[J]. 林业科学, 2013, 49(5): 121-127. LI S M, WANG Y L, HUANG D H, et al. Establishment of a PEG-mediated genetic transformation system and expression of green fluorescence protein in Colletotrichum gloeosporioides[J]. Scientia Silvae Sinicae, 2013, 49(5): 121-127.
[17] HE M, KERSHAW M J, SOANES D M, et al. Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae required non-selective macro-autophagy[J]. Plos ONE, 2012, 7(3): e33270.DOI:10.1371/journal.pone.0033270.
[18] TALBOT N J, KERSHAW M J. The emerging role of autophagy in plant pathogen attack and host defence[J]. Current Opinion in Plant Biology, 2009, 12(4):444-450.DOI:10.1016/j.pbi.2009.05.008.
[19] DONG B, LIU X H, LU J P, et al. MgAtg9 trafficking in Magnaporthe oryzae[J]. Autophagy, 2009, 5(7):946-953.DOI:10.416/auto.5.7.916.
[20] LU J P, LIU X H, FENG X X, et al. An autophagy gene, MgATG5, is required for cell differentiation and pathogenesis in Magnaporthe oryzae[J]. Current Genetics, 2009, 55(4):461-473.DOI:10.1007/s00294-009-0259-5.
[21] NESHER I, BARHOOM S, SHARON A. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides[J]. Current Genetics, 2009, 55(4):461-473.DOI:10.1007/s00294-009-0259-5.
[21] NESHER I, BARHOOM S, SHARON A. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen . BMC Biollogy,2008, 6:9. DOI:10.1186/1741-2007-6-9.

Last Update: 1900-01-01