我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于区域转换因子的不同立地质量阔叶林碳储量估测(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年06期
Page:
87-92
Column:
研究论文
publishdate:
2017-11-30

Article Info:/Info

Title:
Remote sensing estimation of different site-quality broadleaved forest carbon budget in Jiande,Zhejiang
Article ID:
1000-2006(2017)06-0087-06
Author(s):
MENG Xue1LIU Xuehui1 GAO Yuanyun1LIU Jun1WEN Xiaorong1*LIN Guozhong1 XU Da2
1. Co-Innovation for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 2.Center for Forest Resource Monitoring of Zhejiang Province, Hangzhou 310020, China
Keywords:
Keywords:expansion factor site-quality broadleaved forest carbon budget remote sensing estimation Jiande City Zhejiang Province
Classification number :
S757
DOI:
10.3969/j.issn.1000-2006.201606027
Document Code:
A
Abstract:
【Objective】In this study, the influence of different site-quality types on the remote-sensing estimation of the carbon budget of broadleaved forests was analyzed. 【Mothed】Using forest resource inventory data on the management and TM images of Jiande City, Zhejiang Province, China in 2007, the carbon budget in broadleaved forests was calculated by the regional volume-biomass conversion factor continuous function method and biomass-carbon budget coefficient conversion method based on Zhejiang Province; site quality was evaluated by site class method, and then, three models for the estimation of the carbon budget of broad-leaved forests were compared and divided into “above-average”, “below-average site quality” and “no rank” groups, and the accuracy test was conducted. 【Result】The model for estimation of forest carbon storage was constructed with the first principal component as the characteristic variable; the correlation coefficient R was larger than 0.49, and performance was good. The forest carbon-storage regression model was compared using the measured values; whole model accuracy without site class was 65.89%, and accuracy of the above-average, below-average site-quality models were 82.53% and 83.09%, respectively. 【Conclusion】Discrimination between different site qualities can improve the precision of remote-sensing estimation of the carbon budget of broadleaved forests, and the results of this study provided adequate technical support for the remote-sensing estimation of forest carbon budgets.

References

[1] SABINE C L, HEIMANN M, ARTAXO P, et al. Current status and past trends of the global carbon cycle[M].Washington DC: Island Press,2004:17-44.
[2] 何红艳,郭志华,肖文发.遥感在森林地上生物量估算中的应用[J].生态学杂志,2007,26(8):1317-1322. DOI:http://dx.doi.org/10.13292/j.1000-4890.2007.0231. HE H Y, GUO Z H, XIAO W F. Application of remote sensing in forest aboveground biomass estimation[J].Chinese Journal of Ecology,2007,26(8):1317-1322.
[3] 徐天蜀.基于遥感信息的森林生物量、碳储量估测技术研究[J].林业调查规划,2008,33(3):11-13. XU T S. Study on forest biomass & carbon storage estimation based on remote sensing information[J].Forest Inventory and Planning,2008,33(3):11-13.
[4] PRACTICAL P, SPENCER R D, GREEN M A, et al. Integrating Eucalypt forest inventory and GIS in western Australia[J]. Photogrammetric Engineering and Remote Sensing,1997,63(12):1345-1351.
[5] ERIED M A, DAVIS F W, MICHAELSEN J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: analysis using a scene simulation model and data from FIFE[J].Remote Sensing of Environment,1995,54(3): 233-246.DOI: 10.1016/0034-4257(95)00156-5.
[6] 李海奎,雷渊才,曾伟生.基于森林清查资料的中国森林植被碳储量[J].林业科学,2011,47(7):7-12. LI H K, LEI Y C, ZENG W S. Forest carbon storage in China estimated using forestry inventory data[J]. Scientia Silvae Sinicae,2011,47(7):7-12.
[7] 胡海清,罗碧珍,魏书精,等.大兴安岭5种典型林型森林生物碳储量[J].生态学报,2015,35(17):5745-5760. HU H Q, LUO B Z, WEI S J, et al.Estimating biological carbon storage of five typical forest types in the Daxing'anling Mountains, Heilongjiang, China[J]. Acta Ecologica Sinica,2015,35(17):5745-5760.
[8] 李士美,杨传强,王宏年,等.基于森林资源清查资料分析山东省森林立木碳储量[J].应用生态学报,2014,25(8):2215-2220.DOI:10.13287/j.1001-9332.20140611.009. LI S M, YANG C Q, WANG H N, et al. Carbon storage of forest stands in Shandong Province estimated by forestry inventory data[J].Chinese Journal of Applied Ecology, 2014,25(8):2215-2220.
[9] 成向荣,虞木奎,吴统贵,等.立地条件对麻栎人工林碳储量的影响[J].生态环境学报,2012,21(10):1674-1677.DOI:10.16258/j.cnki.1674-5906.2012.10.011. CHENG X R, YU M K, WU T G, et al. Effects of site condition on carbon storage of Quercus acutissima plantations[J].Ecology and Environmental Sciences,2012,21(10):1674-1677.
[10] DIXON R K, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems[J].Science, 1994,263(5144):185-190.DOI: 10.1126/science.263.5144.185.
[11] FOODY G M, BOYD D S, CUTLER M E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J].Remote Sensing of Environment,2003,85(4):463-474.DOI: 10.1016/S0034-4257(03)00039-7.
[12] HAME T, SALLI A, ANDERSSON K, et al. A new methodology for the estimation of biomass of conifer-dominated boreal forest using NOAA AVHRR data[J].International Journal of Remote Sensing,1997,18(15):3211-3243. DOI: 10.1080/014311697217053.
[13] LU D S, BATISTELLA M. Exploring TM image texture and its relationships with biomass estimation in Rondonia, Brazilian, Amazon[J]. Acta Amazonica,2005,35(2):261-268.DOI: 10.1590/S0044-59672005000200015.
[14] 周春国,徐雁南.地位级表编制的新方法[J].华东森林经理,1997,11(2):11-13.DOI:10.13466/j.cnki.lyzygl.1997.05.009. ZHOU C G, XU Y N. Anew method about site class table[J].East China Forest Management,1997,11(2):11-13.
[15] 林昌庚,周春国,林俊钦,等.关于地位级表[J].林业资源管理,1997(5):30-33. LIN C G, ZHOU C G, LIN J Q, et al. Onsite class table[J].Forest Resources Management,1997(5):30-33.
[16] 刘俊,孟雪,温小荣,等. 基于不同立地质量的森林蓄积量遥感估测[J]. 西北林学院学报,2016,31(1):186-191. LIU J, MENG X, WEN X R, et al. Remote sensing estimation of forest volume based on different site qualities[J].Journal of Northwest Forestry University,2016,31(1):186-191.
[17] 陶吉兴.浙江森林碳汇功能监测[M]. 北京:中国林业出版社,2014:249-260.
[18] 张超,彭道黎,涂云燕,等.利用TM影像和偏最小二乘回归方法估测三峡库区森林蓄积量[J].北京林业大学学报,2013,35(3):11-17. DOI:10.13332/j.1000-1522.2013.03.021. ZHANG C, PENG D L, TU Y Y, et al. Predicting forest volume in Three Gorges Reservoir Region using TM images and partial least squares regression[J].Journal of Beijing Forestry University,2013, 35(3):11-17.
[19] 徐天蜀,张王菲,岳彩荣.基于PCA的森林生物量遥感信息模型研究[J].生态环境,2007,16(6):1759-1762.DOI:10.16258/j.cnki.1674-5906.2007.06.047. XU T S, ZHANG W F, YUE C P. Remote-sensing information model of forest biomass based on principal components analysis[J].Ecology and Environment,2007, 16(6):1759-1762.
[20] 罗亚,徐建华,岳文泽.基于遥感影像的植被指数研究方法述评[J].生态科学,2005,24(1):75-79. LUO Y, XU J H, YUE W Z. Research on vegetation indices based on the remote sensing images[J].Ecologic Science,2005, 24(1):75-79.
[21] 刘俊,孟雪,温小荣,等. 基于不同立地质量的松树林蓄积量遥感估测[J]. 林业资源管理,2015(5):55-60.DOI:10.13466/j.cnki.lyzygl.2015.05.010. LIU J, MENG X, WEN X R, et al. Remote sensing estimation of pine volume based on different site qualities[J].Forest Resources Management,2015(5):55-60.

Last Update: 1900-01-01