我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同溶氧条件大薸腐解过程的水质效应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年06期
Page:
127-133
Column:
研究论文
publishdate:
2017-11-30

Article Info:/Info

Title:
Effects of decomposition of Pistia stratiotes on water quality under different dissolvedoxygen conditions
Article ID:
1000-2006(2017)06-0127-07
Author(s):
XI Wenjuan LIU Jing WANG Wei NIU Yuchen XU Chi LIU Maosong
School of Life Sciences, Nanjing University, Nanjing 210093, China
Keywords:
Keywords:aquatic plant decomposition aeration water quality Pistia stratiotes
Classification number :
X524
DOI:
10.3969/j.issn.1000-2006.201609062
Document Code:
A
Abstract:
【Objective】Understanding the differences in the decomposition of aquatic plants and water quality under different dissolved-oxygen levels plays an important role in plant residue management and water-quality control. 【Method】A eutrophic aquatic environment was simulated using a plastic box with Pistia stratiotes under conditions of non-inflated aeration(NA)and inflated aeration(IA).Under indoor and low-light conditions, water-quality indices were determined at different time points. Changes in the major water-quality indices during the decomposition of Pistia stratiotes were analyzed.【Result】Plant residue decomposed faster in the IA group than the NA group; however, the water-quality indices changed synchronously. The major water-quality indices in the initial decomposition stage(1-25 d)changed considerably, and was relatively stable in the subsequent stages(26-95 d).In the initial stage, the concentrations of NO-3-N and NO-2-N remained significantly higher in the IA group than the NA group, and the concentration of PO3-4-P remained lower in the IA group than the NA group; in the subsequent stages,in addition to NH+4-N, values of the major indices were lower in the IA group than the NA group. In the IA group,the major water-quality indices reached maximum values simultaneously among different biomass levels. In the NA group, there was a delay in attaining maximum concentrations of NO-3-N, NO-2-N, and PO3-4-P,and the period of delay increased as the initial amount of plant biomass increased, particularly observable in variation in PO3-4-P concentration.【Conclusion】Generally, comparing with the effect of plant biomass, inflated aeration had a greater impact on water quality. Under the IA condition, the values of the major water-quality indices were higher than those in the NA group. There were significant differences in water quality between the two groups,especially at the initial stage of the study; however,at subsequent stages,the influence of inflated aeration on water quality indices was relatively small.

References

[1] VYMAZAI J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants[J]. Science of the Total Environment, 2016, 544: 495-498. DOI: 10.1016/j.scitotenv.2015.12.011.
[2] CHEN Y, VYMAZAL J, BREZINOVA T, et al. Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands[J]. Science of the Total Environment, 2016, 566: 1660-1669.DOI: 10.1016/j.scitotenv.2016.06.069.
[3] ZHOU X H, WANG G X. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system[J]. Journal of Environmental Sciences, 2010, 22(11): 1710-1717.DOI: 10.1016/S1001-0742(09)60310-7.
[4] ALVAREZ J A, BÉCARES E. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland[J]. Ecological Engineering, 2006, 28(2): 99-105. DOI: 10.1016/j.ecoleng.2006.05.001.
[5] FERREORA V, GRACA M A. Effects of whole-stream nitrogen enrichment and litter species mixing on litter decomposition and associated fungi[J]. Limnologica-Ecology and Management of Inland Waters, 2016, 58: 69-77.DOI:10.1016/j.limno.2016.03.002.
[6] ZHANG D Q, HUI D F, LUO Y Q, et al. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors[J]. Journal of Plant Ecology, 2008, 1(2): 85-93.DOI: 10.1093/jpe/rtn002.
[7] FERREIRA V, CASTAGNEYROL B, KORICHEVA J, et al. A meta-analysis of the effects of nutrient enrichment on litter decomposition in streams[J]. Biological Reviews, 2015, 90(3): 669-688. DOI: 10.1111/brv.12125.
[8] MAS-MARTÍ MUNOZ L, OLIVA F, et al. Effects of increased water temperature on leaf litter quality and detritivore performance: a whole-reach manipulative experiment[J]. Freshwater Biology, 2015, 60(1): 184-197. DOI: 10.1111/fwb.12485.
[9] MONROY S, MIRANDA-APODACA J, PÉREZ-L U, et al. Elevated atmospheric CO2 interacts with drought and competition to produce complex results in plant quality and subsequent microbial aquatic decomposition[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73(999): 1-7. DOI: 10.1139/cjfas-2016-0034.
[10] GODSHALK G L, WETZEL R G. Decomposition of aquatic angiosperms I: dissolved components[J]. Aquatic Botany, 1978, 5: 281-300. DOI: 10.1016/0304-3770(78)90073-6.
[11] MANUSADZIANAS L, DARGINAVICIEN E J, GYLYT E B, et al. Ecotoxicity effects triggered in aquatic organisms by invasive Acer negundo and native Alnus glutinosa leaf leachates obtained in the process of aerobic decomposition[J]. Science of the Total Environment, 2014, 496: 35-44. DOI: 10.1016/j.scitotenv.2014.07.005.
[12] 王博, 叶春, 李春华, 等. 初春苦草腐解过程中营养盐释放过程剂规律[J]. 生态与农村环境学报, 2012, 28(2): 171-175. WANG B, YE C, LI C H, et al. Process and law of nutrient release during decomposition of submerged macrophytes(Vallisneria natans)in early spring[J]. Journal of Ecology and Rural Environment, 2012, 28(2): 171-175.
[13] 唐金艳, 曹培培, 徐驰, 等. 水生植物腐烂分解对水质的影响[J]. 应用生态学报, 2013, 24(1): 83-89. TANG J Y, CAO P P, XU C, et al.Effects of aquatic plants during their decay and decomposition on waterquality[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 83-89.
[14] ZIMMELS Y, KIRZHNER F, MALKOVSKAJA A. Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel[J]. Journal of Environmental Management, 2006, 81(4): 420-428. DOI: 10.1016/j.jenvman.2005.11.014
[15] NAHLIK A M, MITSCH W J. Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica[J]. Ecological Engineering, 2006, 28(3): 246-257. DOI: 10.1016/j.ecoleng.2006.07.006.
[16] 娄敏, 廖柏寒, 刘红玉, 等. 3 种水生漂浮植物处理富营养化水体的研究[J]. 中国生态农业学报, 2005, 13(3): 194-195. LOU M, LIAO B H, LIU H Y, et al. Study of three aquatic floating plants to treat the water eutrophication[J]. Chinese Journal of Eco-Agriculture, 2005, 13(3): 194-195.
[17] 刘盼, 宋超, 朱华, 等. 3种水生植物对富营养化水体的净化作用研究[J]. 水生态学杂志, 2011, 32(2): 69-74. LIU P, SONG C, ZHU H, et al. Studies on eutrophicated water quality improvement by three kinds of hydrophytes[J]. Journal of Hydroecology, 32(2): 69-74.
[18] 王心芳, 魏复盛, 齐文启, 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. WANG X F, WEI F S, QI W Q.Water and wastewater monitoring and analysis method[M]. Beijing: China Environmental Science Press, 2002.
[19] REZENDE R D S, PINTO M D O, GONGALVES JR J F, et al. The effects of abiotic variables on detritus decomposition in Brazilian subtropical mangroves[J]. Acta Limnologica Brasiliensia, 2013, 25(2): 158-168.DOI: 10.1590/S2179-975X2013000200007.
[20] WOOOMER P L, MUZIRA R, BWAMIKI D, et al. Biological management of water hyacinth waste in Uganda[J]. Biological Agriculture & Horticulture, 2000, 17(3): 181-196.DOI: 10.1080/01448765.2000.9754841.
[21] GALE P M, GILMOUR J T. Net mineralization of carbon and nitrogen under aerobic and anaerobic conditions[J]. Soil Science Society of America Journal, 1988, 52(4): 1006-1010. DOI:10.2136/sssaj1988. 03615995005200040019x.
[22] MELILLO J M, NAIMAN R J, ABER J D, et al. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams[J]. Bulletin of Marine Science, 1984, 35(3): 341-356.
[23] FOREE E G, MCCARTY P L. Anaerobic decomposition of algae[J]. Environmental Science & Technology, 1970, 4(10): 842-849. DOI: 10.1021/es60045a005.
[24] CHIMNEY M J, PIETRO K C. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida(USA)[J]. Ecological Engineering, 2006, 27(4): 301-321. DOI: 10.1016/j.ecoleng.2006.05.016.
[25] 叶春, 王博. 沉水植物黑藻早期分解过程及影响因素研究[J]. 中国农学通报, 2009, 25(17): 260-264. YE C, WANG B. The early decomposition process of the submerged macrophyte Uyaritta verticillata and the factors that have a strong impact on it[J]. Chinese Agricultural Science Bulletin, 2009, 25(17): 260-264.
[26] 武海涛, 吕宪国, 杨青, 等. 三江平原典型湿地枯落物早期分解过程及影响因素[J]. 生态学报, 2007, 27(10): 4027-4035. WU H T, LV X G, YANG Q, et al. The early-stage litter decomposition and its influencing factors in the wetland of the Sanjiang Plain,China[J]. Acta Ecologica Sinica, 2007, 27(10): 4027-4035.
[27] 李燕, 王丽卿, 张瑞雷. 5 种沉水植物死亡分解过程中氮磷营养物质的释放[J]. 上海环境科学, 2008, 27(2): 68-72. LI Y, WANG L Q, ZHANG R L. Nutrient releasing dynamics during decomposition process for five species of submerged macrophytes[J]. Shanghai Environmental Sciences, 2008, 27(2): 68-72.
[28] 包裕尉, 卢少勇, 司静, 等. 溶解氧和光照对狐尾藻衰亡释放氮磷碳的影响[J]. 环境科学与技术, 2010, 33(2): 5-9. BAO Y W, LU S Y, SI J, et al. Effect of dissolved oxygen and illumination on nitrogen, phosphorus and carbon release of Myriophyllum spicatum[J]. Environmental Science and Technology, 2010, 33(2): 5-9.
[29] HAI T N, YAKUPITIYAGE A. The effects of the decomposition of mangrove leaf litter on water quality, growth and survival of black tiger shrimp(Penaeus monodon Fabricius, 1798)[J]. Aquaculture, 2005, 250(3): 700-712.DOI: 10.1016/j.aquaculture.2005.04.068.
[30] 王博, 叶春, 李春华, 等. 不同氧环境中黑藻腐解过程及对水体-底泥碳、氮、磷的影响[J]. 应用与环境生物学报, 2013, 19(3): 484-488. WANG B, YE C, LI C H, et al. The process of nutrition release during decomposition of Hydrilla verticillata in different dissolved oxygen conditions[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(3): 484-488.
[31] 邵学新, 梁新强, 吴明, 等. 杭州湾潮滩湿地植物不同分解过程及其磷素动态[J]. 环境科学, 2014, 35(9): 3381-3388. SHAO X X, LIANG X Q, WU M, et al. Decomposition and phosphorus dynamics of the litters in standing and litterbag of the Hangzhou bay coastal wetland[J]. Environmental Science, 2014, 35(9): 3381-3388.
[32] 葛绪广, 王国祥, 李振国, 等. 凤眼莲凋落物及其残体的沉降[J]. 湖泊科学, 2009, 21(5): 682-686. GE X G, WANG G X, LI Z G, et al. The litter and residue of Eichhornia crassipes(Mart.)Solms[J]. Journal of Lake Science, 2009, 21(5): 682-686.
[33] 张菊, 邓焕广, 吴爱琴, 等. 东平湖菹草腐烂分解及其对水环境的影响[J]. 环境科学学报, 2013, 33(9): 2590-2596. ZHANG J, DENG H G, WU A Q, et al. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping Lake[J]. Acta Scientiae Circumstantiae, 2013, 33(9):2590-2596.
[34] 潘慧云, 徐小花, 高士祥. 沉水植物衰亡过程中营养盐的释放过程及规律[J]. 环境科学研究, 2008, 21(1): 64-68. PAN H Y, XU X H, GAO S X. Study on process of nutrition release during the decay of submerged macrophytes[J]. Research of Environmental Sciences, 2008, 21(1): 64-68.
[35] WU S, HE S, HUANG J, et al. Decomposition of emergent aquatic plant(Cattail)litter under different conditions and the influence on water quality[J]. Water Air & Soil Pollution, 2017, 228(2): 70.DOI: 10.1007/s11270-017-3257-0.
[36] CHEN Y, WEN Y, ZHOU Q, et al. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment[J]. Water Research, 2014, 63: 158-167.DOI: 10.1016/j.watres.2014.06.015.

Last Update: 1900-01-01