我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

松科植物木质素合成相关基因研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年06期
Page:
169-176
Column:
综合评述
publishdate:
2017-11-30

Article Info:/Info

Title:
Research progress of lignin synthesis gene in Pinaceae
Article ID:
1000-2006(2017)06-0169-08
Author(s):
CHEN Peizhen WU Xiaogang WEI Qiang WU Xing JI Kongshu
Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:Pinaceae lignin synthesis enzyme genes regwlatory genes
Classification number :
S722; Q591
DOI:
10.3969/j.issn.1000-2006.201703031
Document Code:
A
Abstract:
Abstract: Plant lignin is an essential factor of affecting pulp quality. Pinaceae plants is an important pulp material which means the overall understanding of patterns and controlling factors of lignin synthesis related genes is key for improving the modeling of lignin synthesis. According the current research results, the lignin structure, the lignin synthesis pathway and the related enzymes gene of lignin synthesis in Pinaceae are summarized. Some related genes of lignin synthesis in Pinus taeda, P. massoniana, P. radiata, Picea abie and so on have been researched. The lignin syntheses genes of Pinaceae researches were mainly concentrated in common genes, such as phenylalanine ammonolyase(PAL), 4-coumarate: coenzyme A ligase(4CL), cinnamic 4-hydroxygenase(C4H), coumarate 3-hydroxylase(C3H), caffeoyl coenzyme A-O-methyltransferase(CCoAOMT), cinnamoyl CoA reductase(CCR)and cinnamyl alcohol dehydrogenase(CAD), however, some genes that lack current research, including shikimate hydroxycinnamoyl transferase(HCT), ferulate 5-hydroxylase(F5H), O-methyltransferase(OMT), and caffeic acid O-methyltransferase(COMT). Moreover, some genes were not involved in the study. Lignin synthesis is the essential process of exploring pulp quality of Pinaceae. A better understanding of existing problems of the research on lignin synthesis could contribute to further research on the mechanism of lignin synthesis and help to select high quality pulp genotype in Pinaceae plants.

References

[1] BOUDET A M, LAPIERRE C, GRIMA-PETTENATI J. Biochemistry and molecular biology of lignification[J]. The News Phytologist, 1995,129(2):203-236. DOI: 10.1111/j.1469-8137.1995.tb04292.x.
[2] DAVIN L B, LEWIS N G. Phenylpropanoid metabolism: biosynthesis of monolignols, lignans, neolignans, lignins and suberins[J]. Rec Adv Phytochem, 1992,26:325-375. DOI: 10.1007/978-1-4615-3430-3_11.
[3] HAHLBROCK K, SCHEEL D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Biology, 1989,40:347-369. DOI: 10.1146/annurev.pp.40.060189.002023.
[4] DIXON R A. Natural products and plant disease resistance[J]. Nature, 2001, 411: 843-847. DOI: 10.1038/35081178.
[5] BAURHOO B, RUIZ-FERIA C A, ZHAO X. Purified lignin: nutritional and health impacts on farm animals: a review[J]. Animal Feed Science and Technology, 2008, 144(3-4): 175-184. DOI: 10.1016/j.anifeedsci.2007.10.016.
[6] BHUIYAN N H, SELVARAJ G, WEI Y, et al. Role of lignification in plant defense[J]. Plant Signaling & Behavior, 2009,4:158-159. DOI: 10.4161/psb.4.2.7688.
[7] LEWIS N G, DAVIN L B. Evolution of lignan and neolignan biochemical pathways[J]. ACS Symposium Series, 1994,562:202-246. DOI: 10.1021/bk-1994-0562.ch010.
[8] 魏建华, 宋艳茹. 木质素生物合成途径及调控的研究进展[J]. 植物学报, 2001,43(8):771-779. WEI J H, SUN Y R. Recent advances in study of lignin biosynthesis and manipulation[J]. Journal of Integrative Plant Biology, 2001, 43(8)771-779.
[9] ONYSKO K A. Biological bleaching of chemical pulps: a review[J]. Biotechnology Advances,1993,11(2):179-198. DOI: 10.1016/0734-9750(93)90040-T.
[10] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54:519-546. DOI: 10.1146/annurev.arplant.54.031902.134938.
[11] BOUDET A M, KAJITA S, GRIMA-PETTENATI J, et al. Lignins and lignocellulosics: a better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,8(12):576-581. DOI: 10.1016/j.tplants.2003.10.001.
[12] WENG J K, CHAPPLE C T. The origin and evolution of lignin biosynthesis[J]. New Phytologist, 2010,187(2): 273-285. DOI: 10.1111/j.1469-8137.2010.03327.x.
[13] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001,127:1513-1523. DOI: 10.1104/pp.010816.
[14] HATAKEYAMA H, MATSUMURA H, HATAKEYAMA T. Glass transition and thermal degradation of rigid polyurethane foams derived from castor oil-molasses polyols[J]. Journal of Thermal Analysis and Calorimetry, 2013, 111(2):1545-1552. DOI: 10.1007/s10973-012-2501-5.
[15] HOLLADAY J E, BOZELL J J, WHITE J F, et al. Top value added candidates from biomass, volume II: results of screening for potential candidates from biorefinery lignin[J]. Biomass Fuels, 2007,(2):263-275. DOI: 10.2172/921839.
[16] CHEN Y R, SARKANEN S. X-Ray powder diffraction analyses of kraft lignin-based thermoplastic polymer blends[M]. Oxford, UK: Blackwell Publishing Ltd, 2009:301-315.
[17] SCHORR D, DIOUF PN, STEVANOVIC T. Evaluation of industrial lignins for biocomposites production[J]. Industrial Crops and Products, 2014,52(1):65-73. DOI: 10.1016/j.indcrop.2013.10.014.
[18] LAPIERRE C, POLLET B, PETIT-CORIL M, et al. Structural alteration of lignin in transgenic poplars with depressed cinnamoyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an oppsite impact on the efficiency of industrial kraft pulping[J]. Plant Physiology, 1999,119:153-164. DOI:10.1104/pp.119.1.153.
[19] BUGOS R C, CHIANG V L C, CAMPBELL W H. cDNA clonging, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen[J]. Plant Molecular Biology, 1991,17(6):1203-1215. DOI: 10.1007/BF00028736.
[20] DOORSSELAERE J V, BAUCHER M, CHOGNOT E, et al. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulicacid O-methyltransferase activity[J]. Plant Journal, 1995,8(6):855-864. DOI: 10.1046/j.1365-313X.1995.8060855.x.
[21] HUMPHREYS J M, CHAPPLE C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology, 2002,5(3):224-229. DOI: 10.1016/S1369-5266(02)00257-1.
[22] RASTOGI S, DWIVEDI U N. Manipulation of lignin in plants with special reference to O-methyltransferase[J]. Plant Science. 2008,174(3):264-277. DOI: 10.1016/j.plantsci.2007.11.014.
[23] GRIMA-PETTENATI J, GOFFNER D. Lignin genetic engineering revisited[J]. Plant Science, 1999,145:51-65. DOI:10.1016/S0168-9452(99)00051-5.
[24] RALPH J, LUNDQUIST K, BRUNOW G, et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids[J]. Phytochemistry Reviews, 2004,3(1):29-60. DOI: 10.1023/B:PHYT.0000047809.65444.a4.
[25] VANHOLME R, RALPH J, AKIYAMA T, et al. Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology,2010,64:885-897. DOI: 10.1111/j.1365-313X.2010.04353.x.
[26] VANHOLME R, CESARINO I, RATAJ K, et al. Caffeoyl shikimate esterase(CSE)is an enzyme in the lignin biosynthetic pathway in Arabidopsis[J]. Science, 2013,341(6150):1103-1106. DOI: 10.1126/science.1241602.
[27] VARGAS L, CESARINO I, VANHOLME R, et al. Improving total saccharification yield of Arabidopsis plants by vesselspecific complementation of caffeoyl shikimate esterase(cse)mutants[J]. Biotechnology for Biofuels, 2016,9:139-155. DOI: 10.1186/s13068-016-0551-9.
[28] DIXON R A, PAIVA N L. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7:1085-1097. DOI: 10.1105/tpc.7.7.1085.
[29] RALPH J, MACKAY J J, HATFIELD R D, et al. Abnormal lignin in a loblolly pine mutant[J]. Science, 1997,227(5325):235-239. DOI: 10.1126/science.277.5323.235.
[30] MACKAY J J, OMALLEY D M, PRESNELL T, et al. Inheritance, gene expression and lignin characterization in a mutant pine deficient in cinnamoyl alcohol dehydrogenase[J]. Proc Natl Acad Sci USA, 1997, 94(15): 8255-8260.
[31] ARISTIDOU A, PENTTILA M. Metabolic engineering applications to renewable resource utilization[J]. Current Opinion in Biotechnology, 2000,11(2):187-198. DOI: 10.1016/S0958-1669(00)00085-9.
[32] CHRISTENSEN J H, BAUCHER M, CONNELL A O, et al. Control of lignin biosynthesis[J]. Forestry Sciences, 2000,64:227-267. DOI: 10.1007/978-94-017-2311-4_9.
[33] VOO K S, WHETTEN R W, MLLEY D M, et al. 4-Coumarate: coenzyme a ligase from loblolly pine xylem isolation, characterization, and complementary DNA cloning[J]. Plant Physiol, 1995, 108(1):85-97.
[34] ZHANG X H, CHIANG V L. Molecular cloning of 4-coumarate: coenzyme a ligase in loblolly pine and the roles of this enzyme in the biosynthesis of lignin in compression wood[J]. Plant Physiol, 1997,113(1):65-74. DOI: 10.1104/pp.113.1.65.
[35] LI L, OSAKABE Y, JOSHI C P, et al. Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthetic in Loblloly pine[J]. Plant Mol Biol, 1999,40(4):555-565. DOI: 10.1023/A:1006244325250.
[36] LI L, POPKO J L, ZHANG X H, et al. A novel multifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine[J]. Proc Natl Acad Sci USA, 1997,94(10):5461-5466.
[37] ANTEROLA A M, JEON J H, DAVIN L B, et al. Transcriptional control of monolignol biosynthesis in Pinus taeda: factors affecting monolignol ratios and carbon allocation in phenylpropanoid metabolism[J].The Journal of Biological Chemistry,2002,277(21):18272-18280. DOI: 10.1074/jbc.M112051200.
[38] 陈碧华. 马尾松肉桂酰辅酶A还原酶基因(CCR)克隆与分析[J]. 林业科技, 2009,45(12):46-53. CHEN B H. Cloning and sequence analysis of cinnamoyl-CoA reductase gene(CCR)of Pinus massoniana[J]. Forestry Science and Technology, 2009,45(12):46-53.
[39] 曹福祥, 王猛, 龙绛雪. 马尾松苯丙氨酸解氨酶基因cDNA全长克隆与序列分析[J]. 湖南师范大学自然科学学报, 2010,33(01):91-95. CAO F X, WANG M, LONG J X. Cloning and sequence analys of full-Length cDNA of phenylalanine ammonia-lyase of Pinus massoniana[J]. Journal of Natural Science of Hunan Normal University, 2010,33(1):91-95.
[40] VAN H H, VAN G H, VAN T N, et al. Identification and functional analysis of the Pm4CL1 gene in transgenic tobacco plant as the basis for regulating lignin biosynthesis in forest trees[J]. Molecular Breeding, 2012,29(1):173-180. DOI: 10.1007/s11032-010-9535-9.
[41] 韩欣. 马尾松木质素合成途径中4CL基因克隆及RNA干扰载体构建研究[D]. 长沙:中南科技林业大学, 2012. HAN X. Gene cloning of Pinus massoniana 4CL and construction of its RNAi expression vector[D]. Changsha: Central South University of Science and Technology,2012.
[42] 张逢凯. 马尾松CAD和CCoAOMT基因的克隆与表达分析[D]. 南京: 南京林业大学, 2014. ZHANG F K. Cloning and analyzing of CAD and CCoAOMT genes from Pinus massoniana [D]. Nanjing: Nanjing Forestry University,2014.
[43] MOYLE R, MOODY J, PHILLIPS L. Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter[J]. Plant Cell Reports, 2002,20(11):1052-1060. DOI: 10.1007/s00299-002-0457-9.
[44] MÖLLER R, KOCH G, NANAYAKKARA B, et al. Lignification in cell cultures of Pinus radiata: activities of enzymes and lignin topochemistry[J]. Tree Physiology, 2006,26(2):201-210. DOI: 10.1093/treephys/26.2.201.
[45] WAGNER A, RALGH J, AKIYAMA T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase in Pinus radiata [J]. Proc Natl Acad Sci USA,2007,104(28):11856-11861. DOI: 10.1073/pnas.0701428104.
[46] ARMIN W, LIOYD D, HOON K, et al. Suppression of 4-Coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata[J]. Plant Physiology, 2009,149(1):370-383. DOI: 10.1104/pp.108.125765.
[47] WAGNER A, TOBIMATSU Y, PHILLIPS L, et al. CCoAOMT suppression modifies lignin composition in Pinus radiata[J]. Plant Journal for cell & molecular biology, 2011,67(1):119-129. DOI: 10.1111/j.1365-313X.2011.04580.x.
[48] WANGHER A, TOBIMATSU Y, GOEMINNE G, et al. Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements[J]. Plant Mol Biol, 2013,81(1/2):105-117. DOI: 10.1007/s11103-012-9985-z.
[49] MESSNER B, BOLL M. Elicitor-mediated induction of enzymes of lignin biosynthesis and formation of lignin-like material in a cell suspension culture of spruce(Picea abies)[J]. Plant Cell Tissue & Organ Culture, 1993,34:261-269. DOI: 10.1007/BF00029715.
[50] WADENBÄCK J, ARNOLD S V, WALTER M H, et al. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase(CCR)[J]. Transgenic Research,2008,17(3):379-392. DOI: 10.1007/s11248-007-9113-z.
[51] CRAVEN-BARTLE VENBARTLE B, PASCUAL M B, CANOVAS F M, et al. A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine[J].The Plant Journal, 2013,74(5):755-766. DOI: 10.1111/tpj.12158.
[52] 乔明星, 林晓飞, 张文波. 兴安落叶松咖啡酸-O-甲基转移酶基因的克隆及特性分析[J]. 分子植物育种, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684. QIAO M X, LIN X F, ZHANG W B. Isolation and characterization of caffeic acid O methyltran-sferase gene from Larix gmelinii[J]. Molecular Plant Breeding, 2016,14(7):1684-1690. DOI:10.13271/j.mpb.014.001684.

Last Update: 1900-01-01