我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

低温胁迫下克恩氏冬青幼苗叶片差异蛋白质分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年06期
Page:
187-192
Column:
研究简报
publishdate:
2017-11-30

Article Info:/Info

Title:
Proteomic analysis of Ilex seedling leaf response to low temperature
Article ID:
1000-2006(2017)06-0187-06
Author(s):
ZHOU Yuhua1 2 LIANG Youwang1 PENG Fangren1*
1. College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 2. Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang 212400, China
Keywords:
Keywords:Ilex×koehneana low temperature stress comparative proteomics two-dimensional electrophoresis
Classification number :
S718; Q945.78
DOI:
10.3969/j.issn.1000-2006.201703027
Document Code:
A
Abstract:
【Objective】Study the molecular mechanism of Ilex×koehneana ‘Emily Bruner' in response to low temperature stress.【Mothed】 We analyzed the proteomic differences in leaves among different temperature treatment(0 ℃, -8 ℃ and -16 ℃)by using 2-DE coupled with MALDI-TOF/TOF MS.【Result】 The 2-DE profile of the total protein in the leaves demonstrated that more than 1 000 protein spots were detected with good reproducibility in the range of molecular masses of 15-120 ku and pH 4-7. A total of 31 protein spots in low temperature treatments exhibited significant changes in abundance of less than 0.66-fold or more than 1.5-fold(P<0.05)compared to CK. After MALDI-TOF/TOF MS analysis, a total of 23 differentially accumulated protein spots were successfully identified. Among the 23 identified proteins, 20 proteins had assigned functions, and the other 3 were identified as novel with no assigned function. The 20 proteins with assigned functions were classified into 8 metabolic pathways and cellular processes, including protein and amino acid metabolism, carbohydrate metabolism, carbon fixation in photosynthetic organisms, lipid metabolism, photosynthesis, redox homeostasis, defense response, and nitrogen metabolism. The identifications of these differentially accumulated proteins indicates the presence of a specific different metabolic network in Ilex in response to cold stress.【Conclusions】These studies as a first step towards understanding the molecular mechanisms of low temperature resistance of Ilex, will provide the research basis for cultivating and screening relatively cold resistant varieties.

References

[1] 李淑琴, 张璐, 张纪林, 等. 三种冬青属树种的耐涝性和耐旱性评价[J]. 生态学杂志, 2007, 26(2): 204-208. DOI: 10.13292/j.1000-4890.2007.0038. LI S Q, ZHANG L, ZHANG J L, et al. Evaluation of waterlogging and drought tolerance of three Ilex species [J]. Chinese Journal of Ecology, 2007, 26(2): 204-208.
[2] 张璐, 张纪林, 教忠意, 等. 不同光照条件下3种冬青属植物的光合特征日变化研究[J].西北植物学报, 2006, 26(3): 490-495. DOI: 10.3321/j.issn:1000-4025.2006.03.010. ZHANG L, ZHANG J L, JIAO Z Y, et al. Diurnalphotosynthetic changes of three Ilex species under different light circumstances [J]. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 490-495.
[3] 章建红, 高云振, 张斌, 等. 26种冬青属植物遗传多样性分析[J]. 西北植物学报, 2011, 31(3): 504-510. ZHANG J H, GAO Y Z, ZHANG B, et al. Genetic diversity of Ilex species [J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(3): 504-510.
[4] 曹菁, 杨同辉, 章建红, 等. 浙江天童冬青属植物的种群结构及更新类型[J]. 浙江农林大学学报, 2015, 32(1): 76-83. DOI: 10.11833/j.issn.2095-0756.2015.01.011. CAO J, YANG T H, ZHANG J H, et al. Population structure and regeneration types of Ilex spp. in Tiantong National Forest Park, Zhejiang Province [J]. Journal of Zhejiang A & F University, 2015, 32(1):76 - 83.
[5] 赵明明, 周余华, 彭方仁, 等. 低温胁迫下冬青叶片细胞内Ca2+水平及可溶性糖含量的变化[J]. 南京林业大学学报(自然科学版), 2013, 37(5): 1-5. DOI: 10.3969/j.issn.1000-2006.2013.05.001. ZHAO M M, ZHOU Y H, PENG F R, et al. Changes of Ca2+ level and soluble sugar content in cells of Ilex leaflets under low temperature stress [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(5): 1-5.
[6] 张纪林, 谢晓金, 教忠意, 等. 几种冬青属植物抗冻能力比较[J]. 园艺学报, 2005, 32(3): 477-481. DOI: 10.3321/j.issn:0513-353X.2005.03.019. ZHANG J L, XIE X J, JIAO Z Y, et al. The comparison of frozen resistance of several tree species of Ilex L. [J]. Acta Horticulturae Sinica, 2005, 32(3): 477-481.
[7] 周余华, 唐义明, 赵明明. 低温胁迫对克恩氏冬青超微结构及细胞内Ca2+分布的影响[J]. 江苏农业科学, 2015, 43(3): 166-168. DOI: 10.15889/j.issn.1002-1302.2015.03.053. ZHOU Y H, TANG Y M, ZHAO M M. Effects of low temperature stress on the ultrastructure of Ilex × koehneana ‘Emily Bruner' and the intracellular Ca2+ distribution [J]. Jiangsu Agricultural Sciences, 2015, 43(3): 166-168.
[8] 毛志滨, 谢晓金, 汤庚国. 7种冬青树种耐低温能力比较[J]. 南京林业大学学报(自然科学版), 2006, 30(1): 33-36. DOI: 10.3969/j.issn.1000-2006.2006.01.008. MAO Z B, XIE X J, TANG G G. The comparison of low temperature tolerance ability of seven species of Ilex trees [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(1): 33-36.
[9] YADAV S K. Cold stress tolerance mechanisms in plants: a review [J]. Agronomy for Sustainable Development, 2010, 30(3): 515-527. DOI: 10.1051/agro/2009050.
[10] TOORCHI M, NOURI M Z, TSUMURA M, et al. Acoustic technology for high-performance disruption and extraction of plant proteins [J]. Journal of Proteome Research, 2008, 7(7): 3035-3041. DOI: 10.1021/pr800012c.
[11] MA H Y, SONG L R, HUANG Z G, et al. Comparative proteomic analysis reveals molecular mechanism of seedling roots of different salt tolerant soybean genotypes in responses to salinity stress [J]. Eupa Open Proteomics, 2014, 4: 40-57. DOI: 10.1016/j.euprot.2014.05.005.
[12] SCHWENDER J, OHLROGGE J, SHACHAR-HILL Y. Understanding flux in plant metabolic networks [J]. Current opinion in plant biology, 2004, 7(3): 309-317. DOI: 10.1016/j.pbi.2004.03.016.
[13] FERNIE A R, GEIGENBERGER P, STITT M. Flux an important, but neglected, component of functional genomics [J]. Current Opinion in Plant Biology, 2005, 8(2): 174-182. DOI: 10.1016/j.pbi.2005.01.008.
[14] THOMASHOW M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms [J]. Annual review of plant biology, 1999, 50(1): 571-599. DOI: 10.1146/annurev.arplant.50.1.571.
[15] 肖龙, 张彩霞, 宗泽冉, 等. 苹果叶片应答轮纹病菌胁迫的叶绿体蛋白质组学分析[J]. 果树学报, 2016, 33(11): 1357-1366. DOI:10.13925/j.cnki.gsxb.20160045. XIAO L, ZHANG C C, ZONG Z R, et al. Proteomic analysis of pathogen-responsive proteins from the chloroplast of apple leaves induced by Botryosphaeria dothidea [J]. Journal of Fruit Science, 2016, 33(11): 1357-1366.
[16] 孙言伟, 姜颖, 贺福初. 差异蛋白质组学的研究进展[J]. 生命科学, 2005, 17(2): 137-140. DOI: 10.3969/j.issn.1004-0374.2005.02.007. SUN Y W,JIANG Y,HE FC. Advance in differential proteomics research [J]. Chinese Bulletin of Life Sciences, 2005, 17(2): 137-140.
[17] ENSMINGER I, BUSCH F, HUNER N. Photostasis and cold acclimation: sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2006,126(1): 28-44.
[18] GHARECHAHI J, ALIZADEH H, NAGHAVI M R, et al. A proteomic analysis to identify cold acclimation associated proteins in wild wheat(Triticum urartu L.)[J]. Mol Biol Rep, 2014,41(6): 3897-3905.
[19] 靳静晨, 马东媛, 靳永胜, 等. 烟草转酮醇酶基因(NtTK)的克隆与表达[J]. 河南农业大学学报, 2008, 42(5): 479-482. DOI: 10.16445/j.cnki.1000-2340.2008.05.011. JIN J C, MA D Y, JIN Y S, et al. Cloning and expression of transketolase gene(NtTK)in tobacco [J]. Journal of Henan Agricultural University, 2008, 42(5): 479-482.
[20] WANGNER D, SALNIKOW J, OTTO A, et al. A protein chemical analysis of the heterogeneity of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Zea mays[J]. Plant Science, 1996, 113(1): 13-20. DOI: 10.1016/0168-9452(95)04265-2.
[21] 田鑫. 春大豆苗期耐低温种质的评价以及耐性机制的差异蛋白质组学研究[D]. 南京:南京农业大学, 2012. TIAN X. Evaluation of cold tolerance germplasm and differential proteomic analysis of tolerance mechanism in spring soybean seedlings [D].Nanjing:Nanjing Agricultural University, 2012.
[22] 孙勇, 王丹, 仝征, 等. 香蕉幼苗叶片响应低温胁迫的比较蛋白质组学研究[J]. 中国农学通报, 2015, 31(34): 216-228. SUN Y, WANG D, TONG Z, et al.Proteomic analysis of banana seedling leaf response to low temperature [J]. Chinese Agricultural Science Bulletin, 2015, 31(34): 216-228.
[23] XIA Y, NING Z, BAI G, et al. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene(Lhcb1)associated with agronomic traits in barley[J]. Plos One, 2012, 7(5): e37573. DOI: 10.1371/journal.pone.0037573.
[24] 任汇淼, 魏家绵, 沈允钢. 叶绿体ATP合成酶的结构、功能及调节的研究进展[J]. 植物生理学报, 1994, 30(3): 161-169. DOI: 10.13592/j.cnki.ppj.1994.03.001. REN H M,WEI J M,SHEN Y G. Progress in the study on structure,function and regulation of chloroplast ATP synthase [J]. Plant Physiology Communications, 1994, 30(3): 161-169.
[25] WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response [J]. Trends in Plant Science, 2004, 9(5): 244-252. DOI: 10.1016/j.tplants.2004.03.006.
[26] LI Q B, HASKELL D W, GUY C L. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato [J]. Plant Molecular Biology, 1999, 39(1): 21-34. DOI: 10.1023/A: 1006100532501.
[27] KARUPPANAPANDIAN T, MOON J C, KIM C, et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms [J]. Australian Journal of Crop Science, 2011, 5(6): 709-725.
[28] TAYLOR N L, TAN Y F, JACOBY R P, et al. Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes [J]. Journal of Proteomics, 2009, 72(3): 367-378. DOI: 10.1016/j.jprot.2008.11.006.

Last Update: 1900-01-01