我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

木材表面g-C3N4的固定及其光降解性能表征(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年01期
Page:
193-197
Column:
研究简报
publishdate:
2018-01-31

Article Info:/Info

Title:
Immobilized of g-C3N4 on wood surface and characterization of its photodegradation property
Article ID:
1000-2006(2018)01-0193-05
Author(s):
YUAN BingnanDONG YueGUO Minghui*
Key Laboratory of Bio-based Material Science and Technology of China Ministry of Education, Northeast Forestry University, Harbin 150040, China
Keywords:
Keywords:wood surface graphite-like carbon nitride(g-C3N4) function wood photodegradation
Classification number :
S781
DOI:
10.3969/j.issn.1000-2006.201609011
Document Code:
A
Abstract:
【Objective】The graphitic carbon nitride(g-C3N4)was immobilized on wood surface to decrease the use of poisonous chemical coating material in wood surface modification and imparted self-cleaning property to wood products.【Method】The g-C3N4 samples were characterized by Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction, and elemental analysis(EA). Their spectral data were consistent with previous reports.The scanning electron microscope(SEM)images showed that the wood surface was coated with g-C3N4. The modified wood surface could degrade MO under visible light.【Result】The synthesized micrometer-scale g-C3N4 with amino groups processed the highly photocatalytic activity. Especially, the g-C3N4 prepared under 520 ℃ had the best performance. Although g-C3N4 immobilized on the wood surface showed a lower photocatalytic activity than free g-C3N4 did, it retained enough efficiency.【Conclusion】We successfully synthesized the g-C3N4 with highly reactivity. The wood surface was imparted self-cleaning property by immobilizedg-C3N4 samples.

References

[1] GAO L, ZHAN X, LU Y, et al. pH-dependent structure and wettability of TiO2-based wood surface[J]. Materials Letters, 2015, 142: 217-220. DOI:10.1016/j.matlet.2014.12.035.
[2] 高鹤, 梁大鑫, 李坚,等. 纳米TiO2-ZnO二元负载木材的制备及性质[J]. 高等学校化学学报, 2016, 37(6):1075-1081.DOI:10.7503/cjcu20150829. GAO H, LIANG D X, LI J, et al.Preparation and properties of nano TiO2-ZnO binary collaborative wood[J].Chemical Journal of Chinese Universities,2016,37(6):1075-1081.
[3] LU Y, XIAO S, GAO R, et al. Improved weathering performance and wettability of wood protected by CeO2 coating deposited onto the surface[J]. Holzforschung, 2014, 68(3): 345-351. DOI:10.1515/hf-2013-0119.
[4] 常焕君, 刘思辰, 王小青,等. 木材表面纳米TiO2疏水薄膜的构建及抗光变色性能[J]. 南京林业大学学报(自然科学版), 2015(4):116-120. DOI:10.3969/j.issn.1000-2006.2015.04.020. CHANG H J, LIU S C, WANG X Q, et al. Construction of hydrophobic nano-TiO2 on wood surface and analysis of its anti-photodiscoloration performance[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015(4):116-120.
[5] GAO L, GAN W, XIAO S, et al. A robust superhydrophobic antibacterial Ag-TiO2, composite film immobilized on wood substrate for photodegradation of phenol under visible-light illumination[J]. Ceramics International, 2016, 42(2):2170-2179. DOI:10.1016/j.ceramint.2015.10.002.
[6] GAN W, GAO L, ZHANG W, et al. Removal of oils from water surface via useful recyclable CoFe2O4/sawdust composites under magnetic field[J]. Materials & Design, 2016, 98:194-200. DOI:10.1016/j.matdes.2016.03.018.
[7] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[M/OL]. Materials for sustainable energy:A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 271-275.http:world scientific.com/doi/abs/10.1142/9789814317665_0039.
[8] 张金水,王博,王心晨. 石墨相氮化碳的化学合成及应用[J]. 物理化学学报, 2013, 29(9):1865-1876.DOI:10.3866/PKU.WHXB201306173. ZHANG J S, WANG B, WANG X C. Chemical synthesis and applications of graphitic carbon nitride[J].Acta physicalchemicalsinica,2013, 29(9):1865-1876.
[9] 李冬花. g-C3N4及其复合材料的制备及光降解性能的研究[D]. 太原:山西大学, 2013. LI D H. The preparation and performance of photodegradation ofcompound hybridized with g-C3N4[D]. Taiyuan: Shanxi University,2013.
[10] LEI B, ZHANG Y, HE Y, et al. Preparation and characterization of wood-plastic composite reinforced by graphitic carbon nitride[J]. Materials & Design, 2015, 66(4):103-109. DOI:10.1016/j.matdes.2014.10.041.
[11 ]YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2009, 25(17):10397.DOI:10.1021/la900923z.
[12] ZHANG Y, THOMAS A, Antonietti M, et al. Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments[J]. Journal of the American Chemical Society, 2009, 131(1):50.DOI:10.1021/ja808329f.
[13] LI X, ZHANG J, SHEN L, et al. Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine[J]. Applied Physics A Materials Science & Processing, 2009, 94(2):387-392. DOI:10.1007/s00339-008-4816-4.
[14] THOMAS A, FISCHER A, GOETTMANN F, et al. ChemInform abstract: Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal‐free catalysts[J]. Cheminform, 2009, 40(9):4893-4908.DOI:10.1002/chin.200909229.
[15] 薛振华, 赵广杰. 碱处理对木材结晶构造的影响及其微观模型[C]. 呼和浩特:全国生物质材料科学与技术学术研讨会, 2008. XUE Z H, ZHAO G J.Effect on crystalliticstructure of wood treated with alkali andmicro-structural model[C].Hohhot: China's Biomass Materials Science and Technology Conference.2008.
[16] ISHIKURA Y, NAKANO T.Adsorption properties and structural features of alkali treated wood[J]. MokuzaiGakkaishi, 2005, 51(6):364-371. DOI:10.2488/jwrs.51.364.
[17] YANG Z, LI J, CHENG F, et al.BiOBr/protonated graphitic C3N4, heterojunctions: Intimate interfaces by electrostatic interaction and enhanced photocatalytic activity[J]. Journal of Alloys & Compounds, 2015, 634:215-222.DOI:10.1016/j.jallcom.2015.02.103.

Last Update: 2018-03-30