我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

低磷胁迫下杉木无性系根系形态及养分利用响应研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年02期
Page:
1-8
Column:
研究论文
publishdate:
2018-03-20

Article Info:/Info

Title:
Response of roots morphological characteristics and nutrient utilization to low phosphorus stress among five clones of Cunninghamia lanceolate(Lamb.)Hook.
Article ID:
1000-2006(2018)02-0001-08
Author(s):
WEI Ruping12 HU Dehuo2 CHEN Jinhui1 SHI Jisen1*
1.Co-Innovotion Center for the Sustainable Forestry in Southern China, Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 2. Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
Keywords:
Keywords:Cunninghamia lanceolate(Lamb.)Hook. clone root morphology low phosphorus stress nutrient utilization
Classification number :
S718; Q945.12
DOI:
10.3969/j.issn.1000-2006.201704027
Document Code:
A
Abstract:
【Objective】 In this study, the roots architecture of Chinese fir(Cunninghamia lanceolate(Lamb.))under low phosphorus stress was explored in order to provide the scientific basis for improving nutrient use efficiency through the genetic improvement of root plasticity.【Method】 Five Chinese fir clones, propagated by tissue culture, were used for pot culture and irrigated with half-strength Hoagland nutrient solution with different KH2PO4(P)supplying levels(low P stress(PO), 0 mmol/L; suitable P(PN), 1.0 mmol/L). The biomass of the root, stem and leaf, as well as the root morphological indices and nutrient(P, N, K, Ca and Mg)accumulation and utilization efficiency were measured for plants of each clone after 60 d of culture.【Result】 ①The biomass and root morphological indices had significant genotypic effects with the change in P application level. ②Compared to plants under suitable P conditions, the biomass of the root, stem, leaf and whole plant were reduced by 20.06%, 20.68%, 14.07% and 16.78%, respectively, while the ratio of root to shoot showed an increasing trend. The total root length, total root surface area, and total root volume was increased by 17.31%, 17.69% and 24.77%, respectively. The average root diameter was decreased by 8.22% under low P stress. ③When supplying with an insufficient P solution, plant P accumulation and P content in the roots were reduced by 17.91% and 16.35%, respectively, there was no significant influence on P contents in the stem and leaf. Meanwhile, with the decrease of P accumulation, the use efficiency of P increased. Under insufficient P treatment, the accumulation of potassium, calcium, nitrogen and magnesium was reduced by 27.58%, 18.56%, 14.95% and 12.85%, respectively. ④Principal component analysis showed that root length, fine root length, ratio of root to shoot, and root dry weight were important morphological indices to low P stress. The result of analysis of regression showed that fine roots had a positive effect on P uptake.【Conclusion】 Chinese fir clones adapted to low P stress through the changes in root architecture, including reducing biomass accumulations of the stem and leaf, as well as the root diameter, and increasing the proportion of fine roots, prompting an increase in the ratio of root to shoot, and increasing the construction efficiency of roots.

References

[1] DYHRMAN S T, JENKINS B D, RYNEARSON T A, et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response [J]. PLoS One, 2012, 7(3): 1643-1646. DOI: 10.1371/j.pone.0033768.
[2] 罗佳,候银莹,程军回,等. 低磷胁迫下不同磷效率基因型棉花的根系形态特征[J]. 中国农业科学, 2016,49(12): 2280-2289. DOI: 10.3864/j.issn.0578-1752.2016.12.004. LUO J, HOU Y Y, CHENG J H, et al. Root morphological characteristics of cotton genotypes with different phosphorus efficiency under phosphorus stress[J]. Scientia Agricultura Sinica, 2016, 49(12): 2280-2289.
[3] 程艳波,李秀平,曹亚琴,等. 不同玉米品种苗期对磷胁迫反应的研究[J]. 玉米科学, 2015, 23(2): 87-92. DOI: 10.13597/j.cnki.maize.science.20150217. CHENG Y B, LI X P, CAO Y Q, et al. Response of maize genotypes to low phosphorus stress at the seedling stage in southern China[J]. Journal of Maize Sciences, 2015, 23(2): 87-92.
[4] 于新超. 不同耐性番茄在低磷胁迫下的生理应答及相关miRNA的表达分析[D]. 沈阳: 沈阳农业大学, 2016. YU X C. Physiological responses of different tolerance of tomato and expression analysis of related miRNA under phosphorus stress [D]. Shenyang: Shenyang Agricultural University, 2016.
[5] 陈隆升,陈永忠,杨小胡,等. 低磷胁迫对不同油茶无性系幼苗生长及养分利用效率的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(3): 45-49. DOI: 10. 3969 /j.issn.1000-2006.2014.03.009. CHEN L S, CHEN Y Z, YANG X H, et al. Effects of low phosphorus stress on the growth and nutrient utilization efficiency of different Camellia oleifera clones [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(3): 45-49.
[6] 陈苏英. 不同家系杉木根系三维构型的差异及其对养分胁迫的响应研究[D]. 福州: 福建农林大学, 2014. CHEN S Y. Study on the difference of three dimensional of root architecture among different Chinese fir families and the response to nutrition stress[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[7] 周志春,谢钰容,金国庆,等. 马尾松种源磷效率研究[J]. 林业科学, 2005, 41(4): 25-30. DOI: 10.3321/j.issn:1001-7488.2005.04.005. ZHOU Z C, XIE Y R, JIN G Q, et al. Study onphosphorus efficiency of different provenances of Pinus massoniana[J]. Scientia Silvae Sinicae, 2005, 41(4): 25-30.
[8] VU D T,TANG C,ARMSTRONG R D. Tillage system affects phosphorus form and depth distribution in three contrasting Victorian soils[J]. Australian Journal of Soil Research, 2009, 47(1): 33-45. DOI: 10.1071/sr08108.
[9] 张福锁. 环境胁迫与植物根际营养[M]. 北京: 中国农业出版社,1998.
[10] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社,2000.
[11] 梁霞,刘爱琴,马祥庆,等. 磷胁迫对不同杉木无性系酸性磷酸酶活性的影响[J]. 植物生态学报, 2005, 29(1): 54-59. LIANG X, LIU A Q, MA X Q, et al. The effect of phosphorus deficiency stress on activities of acid phosphatase in different clones of Chinese fir [J]. Acta Phytoecologica Sinica, 2005, 29(1): 54-59.
[12] 梁翠月,廖红. 植物根系响应低磷胁迫的机理研究[J]. 生命科学, 2015, 27(3): 389-397. DOI: 10.13376/j.cbls/2015051. LIANG C Y, LIAO H. Molecular mechanisms underlying the responses of plant roots to low P stress[J]. Chinese Bulletin of Life Sciences, 2015, 27(3): 389-397.
[13] LIANG C Y, WANG J X, ZHAO J, et al. Control of phosphate homeostasis through gene regulation in crops[J]. Current Opinion in Plant Biology, 2014, 21: 59-66. DOI: 10.1016/j.pbi.2014.06.009.
[14] TYBURSKI J,DUNAJSKA-ORDAK K,SKORUPA M,et al. Role of ascorbate in the regulation of the Arabidopsis thaliana root growth by phosphate availability[J]. Journal of Botany, 2012, 2012: 1-11. DOI: 10.1155/2012/580342.
[15] CAO P,REN Y,ZHANG K,et al. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat[J].Molecular Breeding, 2014, 33(4): 975-985. DOI: 10.1007/sl 1032-013-0013-z.
[16] 陈海英,余海英,陈光登,等. 低磷胁迫下磷高效基因型大麦的根系形态特征[J]. 应用生态学报, 2015, 26(10): 3020-3026. DOI:10.13287/j.1001-9332.20150921.032. CHEN H Y, YU H Y, CHEN G D, et al. Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress[J].Chinese Journal of Applied Ecology, 2015, 26(10): 3020-3026.
[17] ASSUERO S G, MOLLIER A, PELLERIN S. The decrease in growth of phosphorus-deficient maize leaves is related to a lower cell production[J]. Plant, Cell and Environment, 2004, 7(27): 887-895. DOI: 10.1111/j.1365-3040.2004.01194.x.
[18] 秦晓佳,丁贵杰. 磷胁迫对不同种源马尾松幼苗氮钾吸收与利用的影响[J]. 中南林业科技大学学报, 2012, 32(4): 32-36. DOI: 10.14067/j.cnki.1673-923x.2012.04.025. QIN X J, DING G J. Effects of low phosphorus stress on absorption and utilization of nitrogen and potassium in different provenances Pinus massoniana seedlings[J]. Journal of Central South University of Forestry & Technology, 2012, 32(4): 32-36.
[19] 陈海峰. 外源钙对杉木适应低磷逆境的影响机制[D]. 福州: 福建农林大学, 2012. CHEN H F. Influence mechanism of exogenous calcium on the adaptation to low phosphorus stress of Chinese fir[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012.
[20] 张平,高祥,周毅,等. 磷胁迫下氮形态对苗期玉米氮素吸收与分配的影响[J]. 热带作物学报, 2016, 37(4): 694-699. DOI: 10.3969/j.issn.1000-2561.2016.04.009. ZHANG P, GAO X, ZHOU Y, et al. Effects of nitrogen forms on nitrogen uptake and distribution under phosphorus stress in corn seedling[J]. Chinese Journal of Tropical Crops, 2016, 37(4): 694-699.
[21] 王树起,韩晓增,严君,等. 缺磷胁迫对大豆根系形态和氮磷吸收积累的影响[J].土壤通报, 2010, 41(3): 644-650. WANG S Q, HAN X Z, YAN J, et al. Impact of phosphorus deficiency stress on root morphology, nitrogen concentration and phosphorus accumulation of soybean(Glycine max L.)[J]. Chinese Journal of Soil Science, 2010, 41(3): 644-650.
[22] 李绍长,胡昌浩,龚江,等. 供磷水平对不同磷效率玉米氮、钾素吸收和分配的影响[J]. 植物营养与肥料学报,2004,10(3): 237-240. DOI: 10.3321/j.issn:1008-505X.2004.03.003. LI S C, HU C H, GONG J, et al. Effects of phosphorus supply on nitrogen and potassium absorption and distribution of maize with different phosphorus efficiency[J]. Plant Nutrition and Fertilizer Science, 2004, 10(3): 237-240.

Last Update: 2018-06-12