我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

短日照处理诱导油松容器苗针叶差异表达蛋白质的功能分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年02期
Page:
17-24
Column:
研究论文
publishdate:
2018-03-20

Article Info:/Info

Title:
Analysis of differentially expressed protein functions of Pinus tabulaeformis seedling leaves induced by short-day treatment
Article ID:
1000-2006(2018)02-0017-08
Author(s):
JIANG Le LIU Yong* LI Guolei LIN Ping SHI Wenhui WAN Fangfang
Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083,China
Keywords:
Keywords:short-day treatment Pinus tabulaeformis Carr. proteomics basic metabolism stress resistance
Classification number :
S718.52
DOI:
10.3969/j.issn.1000-2006.201605005
Document Code:
A
Abstract:
【Objective】 Determining basic metabolism and stress resistance response to short-day treatment at the protein level for Pinus tabulaeformis Carr. container seedling and providing theoretical basis for applying the short-day treatment on seedlings used in the difficult site afforestation in Northern China.【Method】Short-day treatment was applied to P. tabulaeformis container seedlings by artificially reduced day length to 10 hours for 21 days. Seedling leaves were sampled and leaf proteins were extracted by improved phenol method. A proteomic analysis using two-dimensional electrophoresis(2-DE)in combination with MALDI-TOF/TOF MS analysis was performed to investigate changes in protein expression. The MS/MS data were submitted to Mascot search engine to search the NCBInr and Swiss Prot database for protein identification. Functional information of the identified proteins was found in UniProt.【Result】We obtained five proteins expressed differentially(P < 0.05)induced by short-day treatment. They were up-regulated expression of oxygen-evolving enhancer protein 1(OEE1)(spot 404), glyceraldehyde-3-phosphate dehydrogenase(GAPDH)(spot 539), elongation factor Tu(EF-Tu)(spot 654), ribulose bisphosphate carboxylase/oxygenase activase(RCA)(spot 681), and down-regulated expression of phosphoglycerate kinase 1(PGK1)(spot 641). They are mainly involved in plant photosynthetic metabolism, sugar metabolism and stress defense.【Conclusion】The different expression of P. tabulaeformis seedling leaf proteins can be induced by short-day treatment. These proteins are mainly involved in plant primary metabolism and stress response, suggesting that short-day treatment could play important roles in the development of basic metabolism and stress resistance of seedling.

References

[1] 刘勇, 李国雷, 祝燕. 美国林木种苗培育技术现状及启示[J]. 世界林业研究, 2013, 26(4):75-80. DOI:10.13348/ j.cnki.sjlyyj.2013.04.004. LIU Y, LI G L, ZHU Y. Nursery techniques in the USA and their inspirations[J]. World Forestry Research, 2013, 26(4): 75-80.
[2] 蒋乐, 李国雷, 刘勇, 等. 短日照处理在夏季造林中的应用及研究进展[J]. 世界林业研究, 2013, 26(5): 36-40. DOI:10.13348/j.cnki.sjlyyj.2013.05.013. JIANG L, LI G L, LIU Y, et al. Research progress of application of short-day treatment to summer planting[J]. World Forestry Research, 2013, 26(5): 36-40.
[3] LUORANEN J, RIKALA R. Post-planting effects of early-season short-day treatment and summer planting on Norway spruce seedlings[J]. Silva Fennica, 2015, 49(1): 1-9. DOI: 10.14214/sf.1300.
[4] TAN W X, BLANTON S, BIELECH J P. Summer planting performance of white spruce 1+0 container seedlings affected by nursery short-day treatment[J]. New Forests, 2008, 35(2): 187-205. DOI:10.1007/ s11056-007-9071-6.
[5] OLSEN J E. Light and temperature sensing and signaling in induction of bud dormancy in woody plants[J]. Plant Molecular Biology, 2010, 73(1): 37-47. DOI:10.1007/ s11103-010-9620-9.
[6] FLØISTAD I S, GRANHUS A. Bud break and spring frost hardiness in Picea abies seedlings in response to photoperiod and temperature treatments[J]. Canadian Journal of Forestry Research, 2010, 40(5): 968-976. DOI: 10.1139/X10-050.
[7] GONZÁLEZ L M G, El KAYAL W, MORRIS J S, et al. Diverse chitinases are invoked during the activity-dormancy transition in spruce[J]. Tree Genetics & Genomes, 2015, 11(3): 1-21. DOI: 10.1007/ s11295-015-0871-0.
[8] FENNELL A Y, SCHLAUCH A, GOUTHU S, et al. Short day transcriptomic programming during induction of dormancy in grapevine[J]. Frontiers in Plant Science, 2015, 6: 1-17. DOI: 10.3389/10.3389/ fpls. 2015.00834.
[9] LUORANEN J, HELENIUS P, HUTTUNEN L, et al. Short-day treatment enhances root egress of summer-planted Picea abies seedlings under dry conditions[J]. Scandinavian Journal of Forest Research, 2007, 22(5): 384-389. DOI:10.1080/02827580701551382.
[10] KOSTOPOULOU P, RADOGLOU K, et al. Performance and quality of Cupressus sempervirens L. mini-plug seedlings under reduced photoperiod[J]. European Journal of Forest Research, 2011, 130(4): 579-588. DOI: 10.1007/s10342-010-0447-3.
[11] RODZIEWICZ P, SWARCEWICZ B, CHMIELEWSKA K, et al. Influence of abiotic stresses on plant proteome and metabolome changes[J]. Acta Physiologiae Plantarum, 2014, 36(1): 1-19. DOI: 10.1007/s11738-013-1402-y.
[12] ANGURAJ V A K. Gel-based proteomics in plants: time to move on from the tradition[J]. Frontiers in Plant Science, 2015, 6: 369. DOI: 10.3389/fpls.2015.00369.
[13] CARPENTIER S C, WITTERS E, LAUKENS K, et al. Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis[J]. Proteomics, 2005, 5(10): 2497-2507. DOI:10.1002/pmic.200401222.
[14] BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1): 248-254. DOI:10. 1016/0003-2697(76)90527-3.
[15] CANDIANO G, BRUSCHI M, MUSANTE L, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis[J]. Electrophoresis, 2004, 25(9): 1327-1333. DOI: 10.1002/elps. 200305844.
[16] 毕影东. 樟子松顶芽休眠与萌发转换的蛋白质组学研究[D]. 哈尔滨:东北林业大学, 2010. BI Y D. Proteomics analysis of apical bud during the dormancy-to-growth transitions in Pinus sylvestris L. var. mongolica Litv.[D]. Harbin: Northeast Forestry University, 2010.
[17] TRIPKOVIC T, CHARVY C, ALVES S, et al. Identification of protein binders in artworks by MALDI-TOF/TOF tandem mass spectrometry[J]. Talanta, 2013, 113(15): 49-61. DOI:10.1016/j. Talanta. 2013.03.071.
[18] 陈霞, 陈辉, 高锦明. 秦岭油松针叶挥发性物质的成分分析[J]. 西北植物学报, 2005, 25(6): 1230-1233. CHEN X, CHEN H, GAO J M. Constituents of the volatile materials from the needles of Pinus tabulaeformis in the Qinling ranges[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(6): 1230-1233.
[19] WU X L, GONG F P, WANG W. Protein extraction from plant tissues for 2-DE and its application in proteomic analysis[J]. Proteomics, 2014, 14(6): 645-658. DOI: 10.1002/pmic.201300239.
[20] YANG Y Q, LI X, YANG S H, et al. Comparative physiological and proteomic analysis reveals the leaf response to cadmium-induced stress in poplar(Populus yunnanensis)[J]. PLoS One, 2015, 10(9): 1-20. DOI:10.1371/journal.pone.0137396.
[21] 陈晶瑜, 郭宝峰, 何付丽, 等. 适合双向电泳的植物全蛋白提取方法比较[J]. 中国农学通报, 2010, 26(23): 97-100. CHEN J Y, GUO B F, HE F L, et al. The comparison of protein extraction methods of plant for two-dimensional electrophoresis[J]. Chinese Agricultural Science Bulletin, 2010, 26(23): 97-100.
[22] 徐超, 吴小芹, 林司曦, 等. 马尾松根部蛋白双向电泳分离体系的构建[J]. 南京林业大学学报(自然科学版), 2011, 35(1): 15-18. DOI:10.3969/j.issn.1000-2006.2011.01.00. XU C, WU X Q, LIN S X, et al. Establishment of two-dimensional gel electrophoresis system for analyzing the root protein of Pinus massoniana[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(1): 15-18.
[23] ZHANG M H, LI G W, HUANG W, et al. Proteomic study of Carissa spinarum in response to combined heat and drought stress[J]. Proteomics, 2010, 10(17): 3117-3129. DOI: 10.1002/ pmic. 200900637.
[24] WANG L, LIANG W, XING J, et al. Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.)Druce.[J]. Journal of Proteome Research, 2013, 12(11): 5124-5136. DOI: 10.1021/ pr4006469.
[25] 曾光辉. 杨梅光抑制的研究[D]. 杭州: 浙江大学, 2004. ZENG G H. The study on the photoinhibition of photosynthesis in Myrica rubra Sieb.et Zucc.[D]. Hangzhou: Zhejiang University, 2004.
[26] MARGARIA P, ABBÀ S, PALMANO S. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks[J]. BMC Genomics, 2013, 14(1): 1-15. DOI:10.1186/1471-2164-14-38.
[27] WESTON D J, BAUERLE W L, SWIRE-Clark G A, et al. Characterization of rubisco activase from thermally contrasting genotypes of Acer rubrum (Aceraceae)[J]. American Journal of Botany, 2007, 94(6): 926-934. DOI: 10.3732/ajb.94.6.926.
[28] 张霞, 王艳, 张富春. 逆境胁迫下甘油醛-3-磷酸脱氢酶功能多元化的研究进展[J]. 植物生理学报, 2013, 49(1): 24-28. DOI: 10.13592/j.cnki.ppj.2013.01.002. ZHANG X, WANG Y, ZHANG F C. Advances in the research of the diversified functions of glyceraldehyde-3-phosphate dehydrogenase under unfavorable conditions[J]. Plant Physiology Journal, 2013, 49(1): 24-28.
[29] 龙良启, 孙中武, 宋慧, 等. 生物化学[M]. 北京: 科学出版社, 2005:148-153.
[30] 潘瑞炽.植物生理学[M]. 5版. 北京: 高等教育出版社,2004: 105-108, 247-249. PAN R Z. Plant physiology[M]. 5 Edition. Beijing: Higher Education Press, 2004: 105-108, 247-249.
[31] LEE Y K, ALEXANDER D, WULFF J, et al. Changes in metabolite profiles in Norway spruce shoot tips during short-day induced winter bud development and long-day induced bud flush[J]. Metabolomics, 2014, 10(5): 842-858. DOI: 10.1007/s11306-014-0646-x.
[32] 陈建中, 章镇, 戴剑. 植物蛋白质合成延伸因子[J]. 植物生理学通讯, 2002, 38(4): 406-411. DOI:10.13592/j.cnki.ppj.2002.04.035. CHEN J Z, ZHANG Z, DAI J. Elongation factors in plant protein synthesis[J]. Plant Physiology Communications, 2002, 38(4): 406-411.
[33] 何彩云. 四种针叶树与欧美107杨响应干旱与高温胁迫的蛋白质组研究[D]. 北京:中国林业科学研究院, 2007. HE C Y. Proteomic analysis of four coniferous tree species and Populus×euramericana cv.‘74/76'under drought and high-temperature stress[D]. Beijing: Chinese Academy of Forestry, 2007.
[34] DURAND T C, SERGEANT K, CARPIN S, et al. Screening for changes in leaf and cambial proteome of Populus tremula× P. alba under different heat constraints[J]. Journal of Plant Physiology, 2012, 169(17): 1698-1718. DOI: 10.1016/j. jplph. 2012. 06.016.
[35] 王盾. Rubisco活化酶大小同工型与水稻光合作用的关系研究[D]. 杭州:浙江大学, 2009. WANG D. The relationship between rubisco activase isoforms and photosynthesis in rice[D]. Hangzhou: Zhejiang University, 2009.
[36] 梁颖, 李玉花. 植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J]. 植物生理学通讯, 2009, 45(10): 1027-1032. DOI: 10.13592/j.cnki. ppj.2009.10.001. LIANG Y, LI Y H. Physiological functions of glyceraldehyde-3-phosphate dehydrogena-se in plants under oxidative stress condition[J]. Plant Physiology Communications, 2009, 45(10): 1027-1032.

Last Update: 2018-06-12