我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

肥料类型对潮土肥际微域内微生物数量和分布的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年02期
Page:
59-66
Column:
研究论文
publishdate:
2018-03-20

Article Info:/Info

Title:
Effects of fertilizer type on soil microbes amounts and distributions in fertilizer microsites of fluvo-aquic soil
Article ID:
1000-2006(2018)02-0059-08
Author(s):
PENG Sili1 ZHU Jin2
1. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2. Agricultural Products Quality Safety Supervision and Testing Center, Chongqing 404020, China
Keywords:
Keywords:fluvo-aquic soil fertilizer microsites bacteria fungus actinomycetes
Classification number :
S154
DOI:
10.3969/j.issn.1000-2006.201706044
Document Code:
A
Abstract:
【Objectives】Microbes are functional components in soils, and play a critical role in soil organic matter decomposition and nutrient transformation. To understand the impacts of fertilizer type on soil nutrient retention and supply, soil microbe amounts and distributions in fertilizer microsites were studied. 【Methods】Fluvo-aquic soils of under 20 a with no fertilization(CK)and combined manure and mineral fertilization(MNPK)were collected for soil column incubation from the experimental farm at the Henan Academy of Agricultural Sciences, Zhengzhou, China. Three fertilizers, namely chemical fertilizer(CF), 70% chemical fertilizer + 30% organic manure(CFOM), and single organic fertilizer(OM)were packed with nylon mesh and placed in the middle of the soil column. Soil microbe amounts and distributions in the fertilizer microsites(< 5.0 cm)were measured. 【Results】Compared to no fertilizer(NF), the amount of bacteria in CF fertilizer microsites increased by 84% in the CK-treated soil, but no significant difference was observed in the MNPK-treated soil. In both CK- and MNPK-treated soils, the amounts of fungus in CF fertilizer microsites were not significantly different than those in NF, while the amounts of actinomycetes in CF fertilizer microsites were significantly decreased 33% and 36% compared to those in NF. The amounts of bacteria and fungus in fertilizer microsites of OM and CFOM were significantly higher than those in NF and CF, and showed an apparent spatial heterogeneity. The amounts of bacteria were the highest in the 0.5 cm and 1.0 cm profiles of the fertilizer microsites, while the amounts of fungus were the highest in the 1.0 cm and 2.0 cm profiles. The amounts of actinomycetes in fertilizer microsites of OM and CFOM were also higher than those in NF(P<0.05), and increases in the amounts of actinomycetes was accompanied by a significant increases in the amounts of fungus. 【Conclusions】The dramatic increases of microbe amounts in the CFOM and OM fertilizer microsites inferred that nutrients were fixed by microbes, and subsequently were conducive to soil nutrient intention and continuous supply.

References

[1] 张淑香, 张文菊, 沈仁芳, 等. 我国典型农田长期施肥土壤肥力变化与研究展望[J]. 植物营养与肥料学报, 2015, 21(6): 1389-1393. DOI: 10. 11674 /zwyf. 2015. 0602. ZHANG S X, ZHANG W J, SHEN R F, et al. Variation of soil quality in typical farmlands in China under long-term fertilization and research expedition[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6): 1389-1393.
[2] MOSCATELLI M C, LAGOMARSINO A, MARINARI S, et al. Soil microbial indices as bioindicators of environmental changes in a poplar plantation[J]. Ecological Indicators, 2005, 5(3): 171-179. DOI:10.1016/j.ecolind.2005.03.002.
[3] HATFIELD J L, STEWART B A. Soil biology: effects on soil quality[M]. Boca Raton(USA): Lewis Publishers, 1994.
[4] 李秀英, 赵秉强, 李絮花, 等. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J]. 中国农业科学, 2005, 38(8): 1591-1599. DOI: 10.3321/j.issn: 578-1752. 2005.08.014. LI X Y, ZHAO B Q, LI X H, et al. Effects of different fertilization systems on soil microbe and its relation to soil fertility[J]. Scientia Agriculutra Sinica, 2005, 38(8): 1591-1599.
[5] 张雅坤, 彭赛, 宋倩云, 等. 不同施肥模式对杨树人工林土壤微生物功能多样性的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(5): 1-8. DOI:10.3969/j.issn. 1000-2006.2016.05.001. ZHANG Y K, PENG S, SONG Q Y, et al. Effects of different fertilizers regimes on the functional diversity of soil microbes under poplar plantation[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(5): 1-8.
[6] 张奇春, 王雪芹, 时亚南, 等. 不同施肥处理对长期不施肥区稻田土壤微生物生态特性的影响[J]. 植物营养与肥料学报, 2010, 16(1): 118-123. DOI:10.11674/zwyf.2010. 0117. ZHANG Q C, WANG X Q, SHI Y N, et al. Effects of differentfertilizer treatments on ecological characteristics of microorganism in chemical fertilizer omission paddy soil[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 118-123.
[7] 侯化亭, 张丛志, 张佳宝, 等. 不同施肥水平及玉米种植对土壤微生物生物量碳氮的影响[J]. 土壤, 2012, 44(1): 163-166. DOI:10.3969/j.issn.0253-9829.2012.01.027. HOU H T, ZHANG C Z, ZHANG J B, et al. Effects of fertilization and maize growing on soil microbial biomass carbon and nitrogen [J]. Soils, 2012, 44(1): 163-166.
[8] 鲁如坤. “微域土壤学”——一个可能的土壤学的新分支[J]. 土壤学报,1999, 36(2): 287-288. DOI:10.11766/19990218. LU R K. Micro-zone soil science: a possible new branch of soil science[J]. Acta Pedologic Sinica, 1999, 36(2): 287-288.
[9] 杜振宇, 周健民, 王火焰, 等. 钾在潮土肥际微域中的迁移与转化[J]. 水土保持学报, 2009, 23(2): 202-205. DOI:10.3321/j.issn:1009-2242.2009.02.043. DU Z Y, ZHOU J M, WANG H Y, et al. Movement and transformation of potassium infertilizer microsites in fluvo-aquic soil[J]. Journal of Soil and Water Conservation, 2009, 23(2): 202-205.
[10] 康欧, 李廷轩, 陈小琴, 等. 不同土壤和供肥模式对磷在肥际微域中的迁移和转化的影响[J]. 水土保持学报, 2010, 24(4): 22-26. DOI: 10.13870/j.cnki.stbcxb.2010.04. 014. KANG O, LI T X, CHEN X Q, et al. Effect of fertilization on phosphorus transformation and movement in fertilizer microsites in different soils[J]. Journal of Soil and Water Conservation, 2010, 24(4): 22-26.
[11] 朱劲, 张梦, 袁玲, 等. 氮肥在肥际微域中矿化与迁移的模拟研究[J]. 贵州农业科学, 2011, 39(5): 106-109. DOI:10.3969/j.issn.1001-3601.2011.05.031. ZHU J, ZHANG M, YUAN L, et al. Mineralization and migration of nitrogen in fertilizer microsites[J]. Guizhou Agricultural Sciences, 2011, 39(5): 106-109.
[12] YANG J B, LI X C, XU L, et al. Influence of the nitrification inhibitor DMPP on the community composition of ammonia-oxidizing bacteria at microsites with increasing distance from the fertilizer zone[J]. Biology and Fertility of Soils, 2013, 49(1): 23-30. DOI: 10.1007/s00374-012-0692-3.
[13] 曹志宏, 郝晋珉, 粱流涛. 黄淮海平原粮食产量与主要投入要素的灰度关联分析[J]. 农业现代化研究, 2008, 29(3): 310-313. DOI: 10.3969/j.issn.1000-0275.2008.03. 013. CAO Z H, HAO J M, LIANG L T. Gray comprehensive correlation analysis on major grain output and input elements of Huang-Huai-Hai Plain[J]. Research of Agricultural Modernization, 2008, 29(3): 310-313.
[14] 李阜棣, 喻子牛, 何绍江. 农业微生物学实验技术[M]. 北京: 中国农业出版社, 1996. LI F D, YU Z N, HE S J. Agricultural microbiology experimental techniques[M]. Beijing: China Agricuture Press, 1996.
[15] RINNAN R, MICHELSEN A, BAATH E, et al. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem[J]. Global Change Biology, 2007, 13(1): 28-39. DOI:10.1111/j.1365- 2486.2006.01263.x.
[16] 张恩平, 高巍, 张淑红, 等. 长期施肥条件下菜田土壤微生物特征变化[J]. 生态学杂志, 2009, 28(7): 1288-1291. DOI:10.13292 /j.1000-4890.2009.0216. ZHANG E P, GAO W, ZHANG S H, et al. Effects of long-term fertilization on vegetable field soil microbial characteristics [J]. 2009, 28(7): 1288-1291.
[17] AI C, LIANG G, SUN J, et al. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil[J]. Geoderma, 2012, 173(3): 330-338. DOI:10.1016/j.geoderma.2011.07.020.
[18] DENEF K, ROOBROECK D, MANIMEl M C W, et al. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils[J]. Soil Biology & Biochemistry, 2009, 41(1): 144-153. DOI:10.1016/j.soilbio.2008.10.008.
[19] ZHANG H J, DING W X, HE X H, et al. Influence of 20-year organic and inorganic fertilization on organic carbon accumulation and microbial community structure of aggregates in an intensively cultivated sandy loam soil[J]. PLoS One, 2014, 9(1): e92733. DOI:10.1371/journal.pone. 0092733.
[20] YU H Y, DING W X, LUO J F, et al. Effects of long-term compost and fertilizer application on stability of aggregates-associated organic carbon in intensively cultivated sandy loam soil[J]. Biology and Fertility of Soils, 2012, 48(3): 325-306. DOI:10.1007/s00374-011-0629-2.
[21] PONDER F, TADROS M. Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction[J]. Applied Soil Ecology, 2002, 19(2): 173-182. DOI:10.1016/S0929-1393(01)00182-2.
[22] PEACOCK A D, MULLEN M D, RINGELBERG D B, et al. Soil microbial community responses to dairy manure or ammonium nitrate applications[J]. Soil Biology & Biochemistry, 2001, 33(7): 1011-1019. DOI:10.1016/S0038- 0717(01)00004-9.
[23] CORGIÉ S C, BEGUIRISTAIN, T, LEYVAL C, et al. Spatial distribution of bacterial communities and phenanthrene degradation in the rhizosphere of Lolium perenne L.[J]. Applied and Environmental Microbiology, 2004, 70(6): 3552-3557. DOI:10.1128/AEM.70.6.3552-3557.2004.
[24] LEIGH J, FITTER A H, HODGE A. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria[J]. FEMS Microbiology Ecology, 2011, 76(3): 428-438. DOI:10.1111/j. 1574-6941.2011.01066.x.
[25] 曹书苗, 薛泉宏, 杜霄霞, 等. 模拟施肥条件下养分对生防放线菌数量的影响[J]. 西北农林科技大学学报(自然科学版), 2009, 37(1): 172-176. DOI: 10.13207/j.cnki. jnwafu.2009.01.017. CAO S M, XUE Q H, DU X X, et al. Effect of nutrients on the quantity of soil bio-control actinomycetes under simulated fertilization[J]. Journal of Northwest A & F University(Nat Sci Ed), 2009, 37(1): 172-176.
[26] 贾志红, 孙敏, 杨珍平, 等. 施肥对作物根际微生物的影响[J]. 作物学报, 2004, 30(5): 491-495. DOI:10.3321/ j.issn:0496-3490.2004.05.016. JIA Z H, SUN M, YANG Z P, et al. Influence of different fertilizers to crop rhizosphere microorganisms[J]. Acta Agronomica Sinica, 2004, 30(5): 491-495.
[27] 王岳坤, 洪葵. 红树林土壤因子对土壤微生物数量的影响[J]. 热带作物学报, 2005, 26(3): 109-114. DOI:10. 3969/j.issn.1000-2561.2005.03.022. WANG Y K, HONG K. Effects of soil factors on microbe distributions in mangrove soil[J]. Chinese Journal of Tropical Crops, 2005, 26(3): 109-114.
[28] 蔡燕华. 氮肥施用中的污染问题及防治对策[J].安徽农学通报, 2007, 13(18): 48-50. DOI:10.16377/j.cnki.issn 1007-7731.2007.18.131. CAI Y H. Pollution problems of nitrogen fertilizer application on environment and its countermeasures[J]. Anhui Ayri Sci Bull, 2007, 13(18): 48-50.
[29] ZHANG H J, DING W X, YU H Y, et al. Carbon uptake by a microbial community during 30-day treatment with 13C-glucose of a sandy loam soil fertilized for 20 years with NPK or compost as determined by a GC-C-IRMS analysis of phospholipid fatty acids[J]. Soil Biology & Biochemistry, 2013, 57(2): 228-236. DOI:10.1016/j.soilbio. 2012.08.024.
[30] 靳振江. 耕作和长期施肥对稻田土壤微生物群落结构及活性的影响[D]. 南京: 南京农业大学, 2013. JIN Z J. Changes in microbial community structure and activity in paddy soils with rice cultivation and long-term fertilization. Master thesis[D]. Nanjing: Nanjing Agricultural University, 2013.
[31] BÁRCENAS, MORENO G, GMEZ, et al. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment[J]. Global Change Biology, 2009, 15(12): 2950- 2957. DOI: 10.1111/j.1365-2486.2009.01882.x.

Last Update: 2018-06-12