我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

长白山不同海拔原始红松林土壤活性有机碳含量的生长季动态(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年02期
Page:
67-74
Column:
研究论文
publishdate:
2018-03-20

Article Info:/Info

Title:
Seasonal dynamics of soil active organic carbon content in the original Pinus koraiensis forest in Changbai Mountains, China
Article ID:
1000-2006(2018)02-0067-08
Author(s):
LIU Minghui1 SUN Xue1YU Wenjie2QIN Liwu2 FENG Fujuan1*
1. College of Life Science, Northeast Forestry University, Harbin 150040, China; 2. Changbai Mountain Academy of Sciences,Jilin Provincial Joint Key Laboratory of Changbai Mountain Bioconensis & Biodiversity, Antu 133613,China
Keywords:
Keywords:primitive Pinus koraiensis forest soil active organic carbon elevation soil fertility carbon source / sink Changbai Mountain
Classification number :
S718
DOI:
10.3969/j.issn.1000-2006.201706040
Document Code:
A
Abstract:
【Objection】In this study, the vertical zonal regularity with altitude and growth seasonal variation of the contents of soil dissolved organic carbon(DOC), microbial biomass carbon(MBC)and easily oxidized carbon(EOC)in the surface soil was investigated. The results provide a basis for the scientific evaluation of the stability of the soil carbon pool and the potential function of carbon sequestration in the original P. koraiensis forest, which is of great practical significance in the context of global climate change.【Method】We selected the original Pinus koraiensis-broadleaved mixed forest in Changbai Mountain(from 699 to 1 177 m)as a research object, and selected sample plots at 100 m intervals. At the same altitude, three sample plots were set, and a total of 10 sampling points with a size of 15 cm × 15 cm were randomly set up in an “S” shape at each plot. The contents of DOC, MBC and EOC in the surface soil(0-20 cm)were analyzed by using potassium sulfate extraction, chloroform fumigation extraction and potassium permanganate oxidation methods, respectively, to study the dynamic variations in altitude and growing seasons. 【Result】 We found the contents of DOC increased with altitude, the contents of EOC showed a trend of higher contents at altitudes of 699-1 044 m, although a lower content was observed at 1 177 m, and MBC exhibited the same pattern as EOC but in May and June. The three components accounted for 0.10%-1.45%, 0.08%-2.18% and 5.20%-69.18% of the TOC, respectively. Contents of the three active organic carbons and their proportions accounting for TOC changed obviously during the growing season(from May to October), with significant differences between months(P<0.05). The DOC content was higher in September, the MBC content was higher in June and September, and the EOC contents was the highest in May and June. The contents of all the three components were significantly correlated with available mineral nutrients(nitrogen, phosphorus, and potassium), pH, bulk density and water content of the soil samples(P<0.05), of which the correlation with water content was the highest(r = 0.835). 【Conclusion】The above results imply that the P. koraiensis forest at 699-818 m has a higher soil organic carbon pool stability and stronger soil carbon sink capacity. The accumulation of soil carbon mainly occurred in May, July, August and October, indicating a higher soil carbon sink capacity during this period. In general, the content of soil active organic carbon in the forest soil could be used as a sensitivity index to measure dynamic changes in forest soil nutrients(N, P and K).

References

[1] XU G, CHEN J, BERNINGER F, et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures[J]. Soil Biology and Biochemistry, 2015, 91: 1-13.
[2] 许凯, 徐钰, 葛之葳, 等. 氮添加对杨树人工林土壤活性有机碳季节变化的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(3): 19-23. DOI:10.3969/j.issn.1000-2006.2014.03.004.XU K, XU Y, GE Z W, et al. Effects of nitrogen addition on the seasonal variations of soil labile organic carbon in different age poplar plantations[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(3): 19-23.
[3] 韩冬雪, 王宁, 王楠楠, 等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 2015, 26(12): 3649-3656.HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3649-3656.
[4] 沈宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, 18(3): 32-38.SHEN H, CAO Z H, HU Z Y. Characterization and ecological effects of soil labile organic carbon[J]. Chinese Journal of Ecology, 1999, 18(3): 32-38.
[5] LI S, ZHANG S, PU Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289-297. DOI:10.1016/j.still.2015.07.019.
[6] SHANG W, WU X, ZHAO L, et al. Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai-Tibet Plateau[J]. Catena, 2016, 137: 670-678.
[7] CHEN X, CHEN H Y H, CHEN X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology, 2016, 107: 162-169. DOI:10.1016/j.apsoil.2016.05.016.
[8] PIGNATARO A, MOSCATELLI M C, MOCALI S, et al. Assessment of soil microbial functional diversity in a coppiced forest system[J]. Applied Soil Ecology, 2012, 62(6): 115-123. DOI:10.1016/j.apsoil.2012.07.007.
[9] 李平, 王国兵, 郑阿宝, 等. 苏南丘陵区4种典型人工林土壤活性有机碳分布特征[J]. 南京林业大学学报(自然科学版), 2012, 36(4): 79-83. DOI:10.3969/j.issn.1000-2006.2012.04.016.LI P, WANG G B, ZHENG A B, et al. The variations of soil labile organic carbon in four plantations in south of Jiangsu province[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012, 36(4): 79-83.
[10] XIAO Y, HUANG Z, LU X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China[J]. Ecological Engineering, 2015, 82: 381-389. DOI:10.1016/j.ecoleng.2015.05.015.
[11] 向慧敏, 温达志, 张玲玲, 等. 鼎湖山森林土壤活性碳及惰性碳沿海拔梯度的变化[J]. 生态学报, 2015, 35(18): 6089-6099. DOI:10.5846/stxb201401230171.XIANG H M, WEN D Z, ZHANG L L, et al. Altitudinal changes in active and recalcitrant soil carbon pools of forests in the Dinghu Mountains[J]. Acta Ecologica Sinca, 2015, 35(18): 6089-6099.
[12] 向成华, 栾军伟, 骆宗诗, 等. 川西沿海拔梯度典型植被类型土壤活性有机碳分布[J]. 生态学报, 2010, 30(4): 1025-1034.XIANG C H, LUAN J W, LUO Z S, et al. Labile soil organic carbon distribution on influenced by vegetation types along an elevation gradient in west Sichuan, China[J]. Acta Ecologica Sinica, 2010, 30(4): 1025-1034.
[13] 徐侠, 权伟, 汪家社, 等. 武夷山不同海拔植被带土壤活性有机碳的季节变化[J]. 南京林业大学学报(自然科学版), 2009, 33(3): 55-59. DOI:10.3969/j.issn.1000-2006.2009.03.013.XU X, QUAN W, WANG J S, et al. Seasonal variations of soil microbial available carbon in four plant communities along the altitude gradient in Wuyi Mountain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2009, 33(3): 55-59.
[14] 卢慧, 丛静, 薛亚东, 等. 海拔对神农架表层土壤活性有机碳含量的影响[J]. 林业科学, 2014, 50(8): 162-167. DOI:10.11707/j.1001-7488.20140823.LU H, CONG J, XUE Y D, et al. Effects of elevation on surface layer soil active organic carbon content in Shennongjia Nature Reserve[J]. Scientia Silvae Sinicae, 2014, 50(8): 162-167.
[15] 孙雪, 韩冬雪, 刘岩, 等. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应[J]. 南京林业大学学报(自然科学版), 2018, 41(1): 1-12. DOI:10.3969/j.issn.1000-2006.201609042.SUN X, HAN D H, LIU Y, et al. Responses of soil physicochemical properties and soil microorganism characters regareding as carbon metabolism in original Korean pine forest[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 41(1): 1-12.
[16] 吴家兵, 关德新, 张弥, 等. 长白山阔叶红松林碳收支特征[J]. 北京林业大学学报, 2007, 29(1): 1-6.WU J B, GUAN D X, ZHANG M, et al. Carbon budget characteristics of the broadleaved Korean pine forests in Changbaishan Mountains[J]. Journal of Beijing Forestry University, 2007, 29(1): 1-6.
[17] 王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52(1): 150-158. DOI:10.11707/j.1001-7488.20160118.WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Scientia Silvae Sinicae, 2016, 52(1): 150-158.
[18] 景莎, 田静, MCCORMACK M L, 等. 长白山原始阔叶红松林土壤有机质组分小尺度空间异质性[J]. 生态学报, 2016, 36(20): 6445-6456. DOI:10.5846/stxb201503310626.JING S, TIAN J, MCCORMACK M L, et al. Small-scale spatial heterogeneity of soil organic matter fractions within an original broad-leaved Korean pine forest in Changbai Mountain[J]. Acta Ecologica Sinica, 2016, 36(20): 6445-6456.
[19] DENG Q, CHENG X, HUI D, et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China[J]. Science of the Total Environment, 2015, 541: 230-237. DOI:10.1016/j.scitotenv.2015.09.080.
[20] WANG Q K, WANG S L, DENG S J. Comparative study on active soil organic matter in Chinese fir plantation and native broad-leaved forest in subtropical China[J]. Journal of Forestry Research, 2005, 16(1): 23-26. DOI:10.1007/bf02856848.
[21] FANG C, SMITH P, MONCRIEFF J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433: 57-59. DOI:10.1038/nature03138.
[22] XU X, ZHOU Y, RUAN H, et al. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China[J]. Soil Biology and Biochemistry, 2010, 42(10): 1811-1815. DOI:10.1016/j.soilbio.2010.06.021.
[23] 张仕吉. 湘中丘陵区不同土地利用方式土壤养分及碳库特征研究[D]. 长沙: 中南林业科技大学, 2015.ZHANG S J. Characteristics of different land-use types, soil nutrient, and carbon pool in the hill region of central Hunan[D]. Changsha: Central South University of Forest and Technology, 2015.
[24] SAGGAR S, YEATES G W, SHEPHERD T G. Cultivation effects on soil biological properties, microfauna and organic matter dynamics in Eutric Gleysol and Gleyic Luvisol soils in New Zealand[J]. Soil and Tillage Research, 2001, 58(1/2): 55-68. DOI: 10.1016/S0167-1987(00)00184-7.
[25] 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23): 7625-7633. DOI: 10.5846 /stxb201405060894.XIAO Y, HUANG Z G, WU H T, et al. Compositions and contents of active organic carbon in different wetland soils in Sanjiang Plain, Northeast China[J]. Acta Ecologica Sinica, 2015, 35(23): 7625-7633.
[26] 辜翔, 张仕吉, 项文化, 等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076. DOI: 10.17521/cjpe.2015.0412.GU X, ZHANG S J, XIANG W H, et al. Seasonal dynamics of active soil organic carbon in four subtropical forests in Southern China[J]. Chinese Journal of Plant Ecology, 2016, 40(10): 1064-1076.
[27] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征[J]. 应用生态学报, 2014, 25(06): 1569-1577.WANG D, GENG Z C, SHE D, et al. Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(06): 1569-1577.
[28] 田松岩, 刘延坤, 沃晓棠, 等. 小兴安岭3种原始红松林的土壤有机碳研究[J]. 北京林业大学学报, 2014, 36(5): 33-38. DOI: 10. 13332 /j. cnki. Jbfu. 2014. 05. 015.TIAN S Y, LIU Y K, WO X T, et al. Organic carbon of soil in three original Pinus koraiensis forests in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(5): 33-38.
[29] 黄黎英, 曹建华, 周莉, 等. 不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子[J]. 生态环境, 2007, 16(4): 1282-1288. DOI:10.16258/j.cnki.1674-5906.2007.04.032.HUANG L Y, CAO J H, ZHOU L, et al. Seasonal dynamics of dissolved organic carbon in soil under different geological backgrounds and its influencing factors[J]. Ecology and Environment, 2007, 16(4): 1282-1288.
[30] IQBAL J, HU R, FENG M, et al. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China[J]. Agriculture, Ecosystems & Environment, 2010, 137(3-4): 294-307. DOI:10.1016/j.agee.2010.02.015.
[31] WARREN N, ZOU X. Seasonal nitrogen retention in temperate hardwood forests: The “Vernal Dam” hypothesis and case studies[J]. Acta Phytoecologica Sinica, 2003, 27(1): 11-15. DOI: 10.17521/cjpe.2003.0002.
[32] BUCKERIDGE K M, BANERJEE S, SICILIANO S D, et al. The seasonal pattern of soil microbial community structure in mesic low arctic tundra[J]. Soil Biology and Biochemistry, 2013, 65: 338-347. DOI:10.1016/j.soilbio.2013.06.012.
[33] 张剑, 汪思龙, 王清奎, 等. 不同森林植被下土壤活性有机碳含量及其季节变化[J]. 中国生态农业学报, 2009, 17(1): 41-47.ZHANG J, WANG S L, WANG Q K, et al. Content and seasonal change in soil labile organic carbon under different forest covers[J]. Chinese Journal of Eco-Agriculture, 2009, 17(1): 41-47.
[34] RUTIGLIANO F A, D’ASCOLI R, VIRZO DE SANTO A. Soil microbial metabolism and nutrient status in a Mediterranean area as affected by plant cover[J]. Soil Biology and Biochemistry, 2004, 36(11): 1719-1729. DOI:10.1016/j.soilbio.2004.04.029.
[35] 唐国勇, 黄道友, 童成立, 等. 红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J]. 应用生态学报, 2006, 17(3): 3429-3433. DOI:10.13287/j.1001-9332.2006.0088.TANG G Y, HUANG D Y, TONG C L, et al. Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 3429-3433.
[36] 田松岩, 刘延坤, 沃晓棠, 等. 采样尺度对北京山区典型流域森林土壤养分空间变异的影响——以密云潮关西沟流域为例[J]. 林业科学, 2010, 46(10): 162-166.TIAN S Y, LIU Y K, WO X T, et al. Effect of sampling scale on spatial variability of forest soil nutrient in typical watershed with Miyun Chaoguan West Watershed for example[J]. Scientia Silvae Sinicae, 2010, 46(10): 162-166.

Last Update: 2018-06-12