我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

平安竹纤维形态变异特征及其成因分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年04期
Page:
25-31
Column:
专题报道(Ⅱ)
publishdate:
2018-07-12

Article Info:/Info

Title:
Characterization of fiber morphological variation of Pseudosasa japonica var. tsutsumiana and the underlying mechanism
Article ID:
1000-2006(2018)04-0025-07
Author(s):
WEI QiangGAO Zhipeng GUO LinHU Pei XIA Sujuan DING Yulong
Co-Innovation Center for the Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:Pseudosasa japonica var. tsutsumiana Pseudosasa japonica fiber morphological development gibberellin
Classification number :
S718; S795
DOI:
10.3969/j.issn.1000-2006.201712010
Document Code:
A
Abstract:
Abstract: 【Objective】The study aimed to elucidate the fiber morphological characteristics, as well as the underlying mechanisms, in Pseudosasa japonica var. tsutsumiana, a stable dwarf variant of P. japonica. 【Method】 Microscope observation and paraffin sections were used to compare cell morphology. Relative transcript abundance was measured by quantitative reverse transcription polymerase chain reaction(qRT-PCR), and ultra performance liquid chromatography/gas chromatography-mass spectrometry(UPLC/GC-MS)was used to investigate gibberellin(GA)abundance. 【Result】 Values for fiber length, the ratio of length to width, and the runkel ratio were significantly smaller in P. japonica var. tsutsumiana culm than in P. japonica. However, the width and lumen diameter values of the variant fiber were larger than that in the wild type. Although the fiber cell wall thickness in different culm parts of P. japonica var. tsutsumiana was smaller than those in P. japonica, the difference was statistically insignificant. In addition, the fiber length, length to width ratio, cell wall thickness, and runkel ratio in P. japonica var. tsutsumiana rhizomes were also significantly smaller than those in P. japonica. Similar to the culm, the values for width and lumen diameter in the rhizome fibers of the variant were larger than those of the wild type. Anatomical analysis revealed that irregular phenotypes of fiber cells in P. japonica var. tsutsumiana clearly emerged at the initiation stage of internode elongation. Relative gene expression level measurements of the GA, cell wall growth and cytoskeleton-related genes on the internodes at different elongation stages showed that the GA pathway in P. japonica var. tsutsumiana was inhibited at the early stage of internode growth, and that genes relating to cell wall and cytoskeleton organization were significantly downregulated on the internode during the active growth stage of the variant. Compared with the wild type, the GA content was indeed lower at the internode in the early elongation stage of P. japonica var. tsutsumiana, as was further demonstrated by the qRT-PCR results. 【Conclusion】The inhibition of the GA signal pathway, which results in the downregulation of its downstream genes, such as those related to cell wall growth and cytoskeleton organization, is one of the factors that causes abnormal growth of fiber cells in P. japonica var. tsutsumiana.

References

[1] RAI V, GHOSH J S, PAL A, et al. Identification of genes involved in bamboo fiber development[J].Gene, 2011, 478(1/2):19-27.
[2] 甘小洪.毛竹茎杆纤维细胞的发育生物学研究[D].南京:南京林业大学,2005. GAN X H.Study on the developmental biology of fiber in Phyllostachys edulis culms[D]. Nanjing: Nanjing Forestry University, 2005.
[3] 甘小洪,陈凤,林树燕,等.慈竹不同变异类型的纤维形态研究[J].南京林业大学学报(自然科学版), 2013, 37(4): 99-104.DOI: 1000-2006(2013)04-0099-06. GAN X H, CHEN F, LIN S Y, et al. Fiber morphology of different variation types of Neosinocalamus affinis(Rendle)Keng f. [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(4): 99-104.
[4] 王曙光,普晓兰,丁雨龙,等.云南箭竹纤维形态变异规律[J].浙江林学院学报,2009,26(4):528-532. WANG S G, PU X L, DING Y L, et al. Morphological differences of Fargesia yunnanensis fibers [J]. Journal of Zhejiang Forestry College,2009, 26(4): 528-532.
[5] 普晓兰, 杜凡. 巨龙竹纤维形态及变异规律的研究[J]. 云南林业科技, 2003(1):1-4. DOI: 10.16473/ j. cnki. xblykx1972.2003.01.001. PU X L, DU F. Study of fiber morphology and its variation law of Dendrocalamus sinicus[J]. Yunnan Forestry Science and Technology, 2003(1): 1-4.
[6] 马灵飞,朱丽青.浙江省6种丛生竹纤维形态及其组织比量的研究[J].浙江林学院学报,1990, 7(1): 66-71. MA L F, ZHU L Q. Fiber forms and tissue percentage of six species of sympodial bamboos in Zhejiang Province[J]. Journal of Zhejiang Forestry College, 1990, 7(1): 66-71.
[7] 贺新强, 王幼群, 胡玉熹, 等. 毛竹茎纤维次生壁形成过程的超微结构观察[J]. 植物学报, 2000,42(10):1003-1008. HE X Q, WANG Y Q, HU Y X, et al. Ultrastructural study of secondary wall formation in the stem fiber of Phyllostachys pubescens[J]. Acta Botanica Sinica, 2000, 42(10): 1003-1008.
[8] WEI Q, JIAO C, GUO L, et al. Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots[J]. New Phytologist, 2017, 214(1): 81-96. DOI:10.1111/nph.14284.
[9] 何奇江, 童晓青, 叶华琳, 等. 辣韭矢竹的出笋及幼竹生长节律[J]. 林业科学,2007, 43(6): 143-145. DOI: 1001-7488(2007)06-0143-03. HE Q J, TONG X Q, YE H L, et al. Shooting and growth rhythm of Pseudosasa japonica var. tsutsumian [J]. Scientia Silvae Sinicae, 2007, 43(6): 143-145.
[10] 林树燕, 丁雨龙. 平安竹抗旱生理指标的测定[J]. 林业科技开发, 2006, 20(1): 40-41. DOI: 10.3969/j.issn.1000-8101.2006.01.013. LIN S Y, DING Y L. The physiological responds to drought stress of Pseudosasa japonica [J]. China Forestry Science and Technology, 2006, 20(1): 40-41.
[11] 王光萍, 黄敏仁. 日本平安竹的组织培养及快速繁殖[J]. 植物生理学通讯, 2002, 38(1): 47. WANG G P, HUANG M R. Tissue culture and rapid propagation of Pseudosasa japonica cv. tsutsumiana [J]. Plant Physiology Communications, 2002, 38(1): 47.
[12] 林树燕, 丁雨龙. 电导法对7种观赏竹的抗寒性测定[J]. 西北林学院学报, 2008, 23(1): 34-38. DOI: 1001-7461(2008)01-0034-05. LIN S Y, DING Y L. Establishment of cold resistance of 7 ornamental bamboo species by electric conductivity [J]. Journal of Northwest Forestry University, 2008, 23(1): 34-38.
[13] WEI Q, JIAO C, DING Y L, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo [J]. Tree Physiology, 2017, 38(4):641-654. DOI:10.1093/treephys/tpx129.
[14] 魏强, 丁雨龙. 矢竹地下茎转录组测序及节间生长相关基因表达分析[J]. 南京林业大学学报(自然科学版), 2017, 41(5):42-48. DOI: 1000-2006(2017)05-0042-07. WEI Q, DING Y L. Transcriptome sequencing, de novo assembly and expression analysis of several genes related to internode development in Pseudosasa japonica [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(5):42-48.
[15] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method[J]. Methods, 2001, 25(4):402-408. DOI: 10.1006/meth.2001.1262.
[16] ARITE T, IWATA H, OHSHIMA K, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice[J]. Plant Journal, 2007, 51:1019-1029. DOI:10.1111/j.1365-313X.2007.03210.x.
[17] BUSOV V B, BRUNNER A M, STRAUSS SH. Genes for control of plant stature and form[J]. New Phytologist, 2008, 177: 589-607. DOI: 10.1111/j.1469-8137.2007.02324.x.
[18] ISHIKAWA S, MAEKAWA M, ARITE T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice[J]. Plant Cell Physiology, 2005, 46: 79-86. DOI: 10.1093/pcp/pci022.
[19] LUAN W, LIU Y, ZHANG F, et al. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth[J]. Plant Biotechnology Journal, 2011, 9: 513-524. DOI: 10.1111/j.1467-7652.2010.00570.x.
[20] THOMAS S G, SUN T P. Update on gibberellin signaling. a tale of the tall and the short[J]. Plant Physiology, 2004, 135: 668-676. DOI: 10.1104/pp.104.040279.
[21] YAMAMURO C, IHARA Y, WU X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. The Plant Cell, 2000, 12: 1591-1606.
[22] GRIFFITHS J, MURASE K, RIEU I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell, 2006, 18(12): 3399-3414. DOI: 10.1105/tpc.106.047415.
[23] WILLIGE B C, GHOSH S, NILL C, et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GAINSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. The Plant Cell, 2006, 19: 1209-1220. DOI: 10.1105/tpc.107.051441.
[24] LANGE T, KAPPLER J, FISCHER A, et al. Gibberellin biosynthesis in developing pumpkin seedlings[J]. Plant Physiology, 2005, 139(1): 213-223. DOI: 10.1104/pp.105.064162.
[25] PHILLIPS A L, WARD D A, UKNES S, et al. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis[J]. Plant Physiology, 1995, 108(3): 1049-1057.
[26] ZHANG Z L, OGAWA M, FLEET C M, et al. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2011, 108(5): 2160-2165. DOI: 10.1073/pnas.1012232108.
[27] RICHMOND T. Higher plant cellulose synthases[J]. Genome Biology, 2000, 1(4): 1-5. DOI: 10.1186/gb-2000-1-4-reviews3001.
[28] SCHEIBLE W R, PAULY M. Glycosyl transferases and cell wall biosynthesis: novel players and insights[J]. Current Opinion in Plant Biology, 2004, 7(3): 285-295. DOI: 10.1016/j.pbi.2004.03.006.
[29]CHO H T, KENDE H. Expression of expansin genes is correlated with growth in deepwater rice[J]. The Plant Cell, 1997, 9(9): 1661-1671. DOI: 10.1105/tpc.9.9.1661.

Last Update: 2018-07-27