我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

复合性状的QTL定位模型构建(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年04期
Page:
89-96
Column:
研究论文
publishdate:
2018-07-12

Article Info:/Info

Title:
Computational framework for mapping composite traits
Article ID:
1000-2006(2018)04-0089-08
Author(s):
WANG Jing1 ZHU Sheng2 LI Jiahui1 ZHANG Li1 ZHANG Meng1 JIANG Libo1* HUANG Minren2 WU Rongling1
1. College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; 2. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:composite traits QTL mapping composite traits mapping model(CTM) poplar volume sample size heritability
Classification number :
S722
DOI:
10.3969/j.issn.1000-2006.201702035
Document Code:
A
Abstract:
Abstract: 【Objective】Composite traits are widely used in breeding. Currently, QTL(quantitative trait locus)mapping methods of composite traits only use a single phenotypic value, which is simply derived from a mathematical expression of two or more component traits. These approaches ignored the inherent biological mechanism of phenotype formation, which affects the precision of QTL mapping for composite traits.【Method】For the whole genome sequencing data, we present a new statistical infrastructure for QTL mapping that takes into account biological characteristics of composite traits. This method, termed composite traits mapping model(CTM), integrates different components within genetic mapping through mathematical relationships of composite traits.【Result】To validate the applicability of CTM, we applied it to analyze volume growth data of poplar and identified specific loci that were responsible for the volume growth. Compared with traditional methods for QTL mapping of composite traits, more significant loci were detected CTM exhibited a better performance. The computer simulation showed that CTM is a powerful model for mapping composite traits and the increase in sample size and heritability can increase the accuracy of parameter estimation. 【Conclusion】CTM is a useful tool for QTL mapping of composite traits, thus facilitating our understanding of the genetic architecture of composite traits.

References

[1] ANDERSON J T, WAGNER M R, RUSHWORTH C A, et al. The evolution of quantitative traits in complex environments[J]. Heredity, 2014, 112(1):4-12.
[2] 莫惠栋. 数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战[J]. 扬州大学学报(农业与生命科学版), 2003, 24(2):24-31. DOI:10.3969/j.issn.1671-4652.2003.02.007. MO H D. Look back and reflect on genetic researches of variation for quantitative traits—a challenge for quantitative genetics in post-genome era[J]. Journal of Yangzhou University(Agricultural and Life Sciences Edition), 2003, 24(2):24-31.
[3] SLATE J. From beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits[J]. Evolution, 2013, 67(5):1251-1262.
[4] LAMDER E S, BOTSTEIN D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1):185-199.
[5] 童春发. 林木遗传图谱构建和QTL定位的统计方法[J]. 南京林业大学学报(自然科学版), 2004, 28(1):109. DOI:10.3969/j.issn.1000-2006.2004.01.029. TONG C F. Statistical methods for nstructing genetic linkage maps and mapping QTLs in forest trees[J]. Iournal of Naniing Forestry University(Natural Sciences Edition), 2004, 28(1):109.
[6] KAO C H, ZENG Z B, TEASDALE R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999, 152(3):1203-1216.
[7] WU R, LIN M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits[J]. Nature Reviews Genetics, 2006, 7(3):229-237.
[8] HIRSCHHORN J N, DALY M J. Genome-wide association studies for common diseases and complex traits[J]. Nature Reviews Genetics, 2005, 6(2): 95-108.
[9] 吕洪超, 张瑞杰, 姜永帅,等. 全基因组数据分析软件PLINK在统计遗传学教学中的应用[J]. 科学中国人,2016(30):27-30.
[10] YU J, PRESSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2): 203-208.
[11] KLASEN J R, BARBEZ E, MEIER L, et al. A multi-marker association method for genome-wide association studies without the need for population structure correction[J]. Nature Communications, 2016(7): 13299.
[12] STEPHAN J, STEGLE O, BEYER A. A random forest approach to capture genetic effects in the presence of population structure[J]. Nature Communications, 2015(6):7432.
[13] DAS K, LI J, WANG Z, et al. A dynamic model for genome-wide association studies[J]. Human Genetics, 2011, 129(6):629-639.
[14] HAYES B J, PRYCE J, CHAMBERLAIN A J, et al. Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits[J]. Plos Genetics, 2010,6(9):e1001139.
[15] HUANG X, HAN B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65:531-551.
[16] 段忠取,朱军. 全基因组关联分析研究进展[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4):385-393. DUAN Z Q, ZHU J. Reacher progress of genome-wide association study[J]. Journal of Zhejiang University(Agricultural and Life Sciences Edition), 2015, 41(4):385-393.
[17] MILES B, WAYNE M. Quantitative trait locus(QTL)analysis[R]. Nature Education, 2008.
[18] MACKAY T F. Epistasis and quantitative traits: Using model organisms to study gene-gene interactions[J]. Nature Reviews Genetics, 2014, 15(1):22-33.
[19] ZHAO K, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011,467(2):467.
[20] FROVA C, KRAJEWSKI P, FONZO N D, et al. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components[J]. Theoretical and Applied Genetics, 1999, 99(1):280-288.
[21] 王玉. 利用复合性状开展qtl作图的有效性研究[D]. 沈阳:沈阳农业大学, 2010. WANG Y. On the use of mathematically-derived composite traits and their efficiency in quantitive trait locus mapping[D]: Shenyang: Shenyang Agricalture University, 2010.
[22] 李斌,陈听宽,崔凝. SIMPLEX算法与其他算法收敛特性的比较[J]. 华北电力大学学报(自然科学版), 2004, 31(3):51-55. LI B, CHEN T K, CUI N.Convergence characteristics of SIMPLEX comparing with other SIMPLEX algorithms[J]. Journal of North China Electric Power University(Natural Science Edition), 2004, 31(3):51-55.
[23] 刘光辉,尹红婷. BFGS算法的全局收敛性分析[J]. 曲阜师范大学学报(自然科学版), 1994(1):1-8. LIU G H, YIN H T. Analysis on thglobal convergence of BFGS algorithm[J]. Journal of Qufu Normal University(Natural Sciences Edition), 1994(1):1-8.
[24] XU M, JIANG L, ZHU S, et al. A computational framework for mapping the timing of vegetative phase change[J]. New Phytologist, 2016, 211(2):750-760.
[25] LIU R. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function[J]. Journal of Experimental Botany, 2013, 64(18):2274-2275.
[26] KEITH B, DONG X N, AUSUBEL F M, et al. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack[J]. Proceedings of the National Academy of Sciences, 1991, 88(19):8821-8825.
[27] VOSS I, GOSS T, MUROZUKA E, et al. FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I[J]. Journal of Biological Chemistry, 2010, 286(1):50-59.
[28] VOLL L M, JAMAI A, RENNÉ P, et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1[J]. Plant Physiology, 2006, 140(1):59-66.
[29] REN G, AN K, YANG L, et al. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis[J]. Plant Physiology, 2007, 144(3):1429-1441.
[30] HARTUNG F, SUER S, KNOLL A, et al. Topoisomerase 3α and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in, Arabidopsis thaliana[J]. Plos Genetics, 2008, 4(12):e1000285.
[31] MOEDER W, DEL P O, NAVARRE D A, et al. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana[J]. Plant Molecular Biology, 2007, 63(2):273-287.
[32] KIRIK A, EHRHARDT D W, KIRIK V. TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells[J]. Plant Cell, 2012, 24(3):1158-1170.
[33] WANG W, WANG L, CHEN C, et al. Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes[J]. Journal of Experimental Botany, 2011, 62(14):51-61.
[34] HOBBIE L J. Auxin and cell polarity: the emergence of AXR4[J]. Trends in Plant Science, 2006(11):517-518.
[35] 邬荣领, 林敏, 赵伟,等. 动态复杂性状遗传结构研究的统计模型[J]. 南京林业大学学报(自然科学版),2006,30(3):1-12. DOI:10.3969/j.issn.1000-2006.2006.03.001. WU R L, LIN M, ZHAO W, et al. Statistical models for studying the genetic architecture of dynamic complex traits[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(3):1-12.
[36] BUCKLER E S, HOLLAND J B, BRADBURY P J, et al. The genetic architecture of maize flowering time[J]. Science, 2009, 325(5941):714-718.
[37] 单保山. 遗传力的概念及其发展 Ⅰ.关于传统遗传力的几个问题[J]. 河北农业大学学报,1988,11(1):39-44. SHAN B S. The concept of heritability and its development Ⅰ. Some views on heritability[J]. Journal of Agricultural University of Hebei, 1988, 11(1):39-44.
[38] 侯志强,吴启富. 抽样调查样本量的确定[J]. 全国商情:经济理论研究, 2007(3):108-109. HOU Z Q, WU Q F. Determination of sample size in sampling survey[J]. China Business: Economic Theory Research, 2007(3):108-109.
[39] 胡文明. 作物复杂性状QTL定位相关的几个问题的探讨[D]. 扬州:扬州大学,2014. HU W M. Discussion of several issues related to QTL[D]. Yangzhou: Yangzhou University, 2014.
[40] POETHIG R S. Heterochronic mutations affecting shoot development in maize[J]. Genetics,1988, 119(4):959-973.
[41] RJE W, POTTS B M, REID J B. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii-E. tenuiramis complex[J]. Australian Journal of Botany, 1998(46):45-63.
[42] HUDSON C J, FREEMAN J S, JONES R C, et al. Genetic control of heterochrony in Eucalyptus globulus[J]. G3-Genes Genomes Genetics, 2014, 4(7):359-363.
[43] POETHIG R S. Phase change and the regulation of developmental timing in plants[J]. Science, 2003, 301(5631):334-336.
[44] ROUGVIE A E. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues[J]. Development, 2005, 132(17):3787-3798.
[45] BÄURLE I, DEAN C. The timing of developmental transitions in plants[J]. Cell, 2006, 125(4):655-664.
[46] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19):4117-4129.

Last Update: 2018-07-27