我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

硫酸二甲酯对患丛枝病毛泡桐蛋白组的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年05期
Page:
77-83
Column:
研究论文
publishdate:
2018-09-15

Article Info:/Info

Title:
Effects of dimethyl sulphonate on proteome of Paulownia tomentosa seedlings infected by phytoplasma
Article ID:
1000-2006(2018)05-0077-07
Author(s):
DENG Minjie JIN Ranran ZHAO Zhenli WANG Zhe FAN Guoqiang*
College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
Keywords:
Paulownia tomentosa Paulownia witches' broom disease dimethyl sulphonate(DMS) iTRAQ proteome
Classification number :
S792.43
DOI:
10.3969/j.issn.1000-2006.201801055
Document Code:
A
Abstract:
【Objective】Determine the proteins related to Paulownia broom disease(PaWB)and provide a basis for studying its pathogenesis. 【Method】We used isobaric tags for relative and absolute quantitation(iTRAQ)to analyze proteomes for PaWB-infected Paulownia tomentosa seedlings treated and untreated with dimethyl sulphonate(DMS), and healthy seedlings as the control.【Result】A total of 2 628 proteins was identified, among which 177 proteins exhibited differential expression. By comparison, 37 differentially expressed proteins were found to relate to Paulownia witches' broom disease. Pathway analysis showed that these 37 proteins were mainly involved in photosynthesis, plant-pathogen interactions, and oxidative phosphorylation pathways. 【Conclusion】During the process of PaWB occurrence, the proteins related to photosynthesis were affected. CaM was involved in the interaction between phytoplasma and Paulownia. These results have important significance for the further study of the mechanism of Paulownia witches' broom disease at the protein level.

References

[1] 张根连, 范术丽, 宋美珍, 等. 植物蛋白质组学技术研究进展[J]. 生物技术通报, 2011(7): 26-30. DOI:10.13560/j.cnki.biotech.bull.1985.2011.07.031.
ZHANG G L, FAN S L, SONG M Z, et al. Development of plant proteomics research technology[J]. Biotechnology Bulletin, 2011(7): 26-30.
[2] NI W, ZHU L, SHA R, et al. Comparative iTRAQ proteomic profiling of susceptible and resistant apple cultivars infected by Alternaria alternata, apple pathotype[J]. Tree Genetics & Genomes, 2017, 13(1): 23. DOI: 10.1007/s11295-017-1104-5.
[3] WANG B, HAJANO J U D, REN Y, et al. iTRAQ-based quantitative proteomics analysis of rice leaves infected by rice stripe virus, reveals several proteins involved in symptom formation[J]. Virology Journal, 2015, 12(1): 99. DOI: 10.1186/s12985-015-0328-y.
[4] ZHONG Y, CHENG C Z, JIANG N H, et al. Comparative transcriptome and iTRAQ proteome analyses of Citrus root responses to Candidatus liberibacter asiaticus infection[J]. PloS One, 2015, 10(6): e0126973. DOI: 10.1371/journal.pone.0126973.
[5] BERTACCINI A, DUDUK B. Phytoplasma and phytoplasma diseases: a review of recent research[J]. Phytopathologia Mediterranea, 2010, 48(3): 355-378.
[6] YANG C Y, HUANG Y H, LIN C P, et al. MicroRNA396-Targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptomsl effector[J]. Plant Physiol, 2015, 168(4): 1702-1716.DOI: 10.1104/pp.15.00307.
[7] JI X L, GAI Y P, ZHENG C, et al. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry(Morus alba L.)[J]. Proteomics, 2009, 9(23): 5328-5339. DOI: 10.1002/pmic.200900012.
[8] GAI Y P, HAN X J, LI Y Q, et al. Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease[J]. Plant Cell & Environment, 2014, 37(6): 1474-1490. DOI: 10.1111/pce.12255.
[9] HREN M, NIKOLIC P, ROTTER A, et al. ‘Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine[J]. BMC Genomics, 2009, 10(1): 460. DOI: 10.1186/1471-2164-10-460.
[10] 范国强,赵改丽,翟晓巧,等.硫酸二甲酯对毛泡桐丛枝病幼苗植原体及SSR扩增位点的影响[J].南京林业大学学报(自然科学版),2012,36(3):5-8.DOI:10.3969/j.jssn.1000-2006.2012.03.002.
FAN G Q,ZHAO G L,ZHAI X Q,et al. Effect of dimethyl sulphate on phytoplasma of Paulownia tomentosa seedling infected by witches' broom and its DNA loci at SSR level[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2012,36(3):5-8.
[11] 曹喜兵, 赵振利, 范国强, 等. 甲基磺酸甲酯对毛泡桐丛枝病苗DNA甲基化的影响[J]. 林业科学, 2014, 50(3): 99-108. DOI:10.11707/j.1001-7488.20140314.
CAO X B, ZHAO Z L, FAN G Q. Effect of methyl methanesulphonate on DNA methylation of witches' broom seedlings of Paulownia tomentosa[J]. Scientia Silvae Sinicae, 2014, 50(3): 99-108.
[12] 赵改丽, 赵振利, 范国强, 等. 硫酸二甲酯对白花泡桐丛枝病幼苗形态变化及DNA碱基序列的影响[J]. 河南农业大学学报, 2011, 45(3): 287-291. DOI: 10.16445/j.cnki.1000-2340.2011.03.009.
ZHAO G L, ZHAO Z L, FAN G Q, et al. Effects of dimethyl sulphonate on the morphological changes of Paulownia fortunei seedlings with witches' broom and their DNA base sequences[J]. Journal of Henan Agricultural University, 2011, 45(3): 287-291.
[13] FAN G, CAO X, ZHAO Z, et al. Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa, plantlets infected with phytoplasma[J]. Acta Physiologiae Plantarum, 2015, 37(10): 1-12. DOI: 10.1007/s11738-015-1948-y.
[14] 范国强, 张胜, 翟晓巧, 等. 抗生素对泡桐丛枝病植原体和发病相关蛋白质的影响[J]. 林业科学, 2007, 43(3): 138-142. DOI:10.11707/j.1001-7488.20070324.
FAN G Q, ZHANG S, ZHAI X Q, et al. Effects of antibiotics on the ‘Paulownia witches' broom phytoplasmas and pathogenic protein related to witches' broom symptom[J]. Scientia Silvae Sinicae, 2007, 43(3): 138-142.
[15] WANG Z, LIU W, FAN G, et al. Quantitative proteome-level analysis of ‘Paulownia witches' broom disease with methylmethane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes[J]. Peerj, 2017, 5: e3495.DOI: 10.7717/peerj.3495.
[16] MONAVARFESHANI A, MIRZAEI M, SARHADI E, et al. Shotgun proteomic analysis of the Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”[J]. Journal of Proteome Research, 2013, 12(2): 785-95. DOI: 10.1021/pr300865t.
[17] LIU Z, ZHAO J, LIU M. Photosynthetic responses to phytoplasma infection in Chinese jujube[J]. Plant Physiology & Biochemistry, 2016, 105: 12-20. DOI: 10.1016/j.plaphy.2016.04.003.
[18] 张玲艳, 王宏权. Ca2+-CaM信号系统与植物的抗病性[J]. 热带农业科技, 2014, 37(1): 40-43. DOI:10.16005/j.cnki.tast.2014.01.002
ZHANG L Y, WANG H Q. Ca2+-CaM signal transduction pathway and plant disease resistance[J]. Tropical Agricultural Science & Technology, 2014, 37(1): 40-43.
[19] 刘维. 番茄钙调蛋白和类钙调蛋白的抗病调控功能分析[D]. 杭州:浙江大学, 2015.
LIU W. Functional analyses of tomato calmodulin and calmodiilin-like genes in disease resistance[D]. Hangzhou: Zhejiang University, 2015.
[20] HYONGWOO C, DONGHYUK L, BYUNGKOOK H. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response[J]. Molecular Plant-Microbe Interactions, 2009, 22(11): 1389-1400.
[21] 张振乾, 肖钢, 官春云, 等. 利用转录组及iTRAQ技术筛选高油酸油菜抗病相关基因[J]. 华北农学报, 2015, 30(5): 16-24.
ZHANG Z Q, XIAO G, GUAN C Y, et al.The study of high oleic acid rapeseed disease resistance related genes by transcriptome and iTRAQ analysis[J]. Acta Agriculture Boreali-sinica, 2015, 30(5): 16-24.
[22] CHEN W, LI Y, WANG Q, et al. Comparativegenome analysis of wheat blue dwarf phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China[J]. PLoS One, 2014, 9(5): e96436. DOI: 10.1371/journal.pone.0096436.
[23] PEROZICH J, NICHOLAS H, WANG B C, Relationships within the aldehyde dehydrogenase extended family[J]. Protein Science,1999, 8(1):137-146. DOI: 10.1110/ps.8.1.137.

Last Update: 2018-09-15