我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

短小芽孢杆菌LC01的鉴定及其芽孢漆酶性质的研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年05期
Page:
113-120
Column:
研究论文
publishdate:
2018-09-15

Article Info:/Info

Title:
Identification of Bacillus pumilus LC01 and characterization of its spore laccase
Article ID:
1000-2006(2018)05-0113-08
Author(s):
WANG Jiayi LI Tailun WANG Tiannü LU Lei*
College of Life Sciences, Northeast Forestry University, Harbin 150040, China
Keywords:
Bacillus pumilus laccase enzyme characterization dye decolorization
Classification number :
Q814
DOI:
10.3969/j.issn.1000-2006.201609021
Document Code:
A
Abstract:
【Objective】The previously isolated bacterial strain Bacillus pumilis LC01 displaying high laccase activity was presently investigated to determine spore laccase activity, with the goal of obtaining bacterial laccase with excellent properties for industrial applications. 【Method】LC01 was identified by morphology observation, physiological and biochemical tests, and 16S rDNA sequence analysis. The catalytic properties and dye degradation ability of the spore laccase were investigated under different conditions. 【Result】LC01 was identified as B. pumilus. The optimum pH of LC01 spore laccase was 3.0, 6.6 and 8.6 using 2,2'-2(3-ethylbenzothiazole-6-sulfonic acid), syringaldehyde, and 2,6-dimethoxyphenol as substrates, respectively. The spore laccase showed an optimal temperature of 80 ℃for syringaldazine oxidation. Activity was retained at a high level after incubation at pH 9.0 for 10 days or 50 ℃ for 10 h. The spore laccase-mediator system could efficiently decolorize different synthetic dyes. More than 90% of reactive black 5 and indigo carmine were decolorized within 1 h. Approximately 90% of remazol brilliant blue R was also decolorized after 6 h.【Conclusion】The pronounced efficiency of dye decolorization and good stability under alkali and high temperature conditions indicate the potential of the spore laccase of B. pumilus strain LC01 for diverse industrial applications.

References

[1] PALIWAL R, UNIYAL S, RAI J P N. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation[J]. Environmental Science and Pollution Research, 2015,22(9):6842-6853. DOI:10.1007/s11356-014-3872-x.
[2] CHAUHAN P S, GORADIA B, SAXENA A. Bacterial laccase: recent update on production, properties and industrial applications[J]. Biotech, 2017,7(5):323. DOI: 10.1007/s13205-017-0955-7.
[3] TRUBITISINA L I, TISHCHENKO S V, GABDULKHAKOV A G, et al. Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes[J]. Biochimie, 2015,112:151-159. DOI:10.1016/j.biochi.2015.03.005.
[4] UPADHYAY P, SHRIVASTAVA R, AGRAWAL P K. Bioprospecting and biotechnological applications of fungal laccase[J]. Biotech, 2016(1):15. DOI: 10.1007/s13205-015-0316-3.
[5] TELKE A A, GHODAKE G S, KALYANI D C, et al. Biochemical characteristics of a textile dye degrading extracellular laccase from a Bacillus sp. ADR[J]. Bioresource Technology, 2011,102(2):1752-1756.DOI:10.1016/j.biortech.2010.08.086.
[6] MOLLANIA N, HEIDARI M, KHAJEH K. Catalytic activation of Bacillus laccase after temperature treatment: Structural & biochemical characterization[J]. International Journal of Biological Macromolecules, 2018,109(1):49-56. DOI: 10.1016/j.ijbiomac.2017.12.003.
[7] LUO Q, CHEN Y, XIA J, et al. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis[J]. Enzyme and Microbial Technology, 2018,109:11-19. DOI: 10.1016/j.enzmictec.2017.07.013.
[8] KHODAKARAMI A, GOODARZI N, HOSEINZADEHDEHKORDI M, et al. Rational design toward developing a more efficient laccase: catalytic efficiency and selectivity[J]. International Journal of Biological Macromolecules, 2018,112:775-779. DOI: 10.1016/j.ijbiomac.2018.02.019.
[9] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
DONG X Z, CAI M Y. Manual of systematic identification for common bacteria[M]. Beijing: Science Press, 2001.
[10] WEISBURG W G, BARNS S M, PELLETIER D A, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991,173(3):697-703. DOI:10.1128/jb.173.2.697-703.1991.
[11] 李国富, 栗君, 卢磊, 等. 解淀粉芽孢杆菌LC03的分离及其芽孢杆菌漆酶性质研究[J]. 北京林业大学学报, 2013,35(3):116-121. DOI:10.13332/j.1000-1522.2013.03.002.
LI G F, LI J, LU L, et al. Isolation of laccase-producing strain Bacillus amyloliquefaciens LC03 and characterization of its spore laccase[J]. Journal of Beijing Forestry University, 2013,35(3):116-121.
[12] LU L, ZHAO M, WANG T N, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04[J]. Bioresource Technology, 2012,115:35-40. DOI: 10.1016/j.biortech.2011.07.111.
[13] CHEN Y, LUO Y, ZHOU W, et al. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis[J]. Applied Microbiology and Biotechnology, 2017,101(5):1935-1944. DOI: 10.1007/s00253-016-7962-1.
[14] SIROOSI M, AMOOZEGAR M A, KHAJEH K. Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT[J]. Journal of Molecular Catalysis B: Enzymatic, 2016,134(Part A):89-97. DOI: 10.1016/j.molcatb.2016.10.001.
[15] ZHANG C, DIAO HW, LU FX, et al. Degradation of triphenylmethane dyes using a temperature and pH stable spore laccase from a novel strain of Bacillus vallismortis[J]. Bioresource Technology, 2012,126:80-86.DOI: 10.1016/j.biortech.2012.09.055.
[16] HELD C, KANDELBAUER A, SCHROEDER M, et al. Biotransformation of phenolics with laccase containing bacterial spores[J]. Environment Chemistry Letters, 2005,3(2):74-77.DOI: 10.1007/0311-005-0006-1.
[17] 厉娜, 栗君, 卢磊, 等. 固定化漆酶在染料脱色中的应用[J]. 南京林业大学学报(自然科学版), 2014,38(5):129-133. DOI: 10.3969/j.issn.1000-2006.2014.05.025.
LI N, LI J, LU L, et al. Application of immobilized laccase in dye decolorization[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014,38(5):129-133.
[18] SENTHIVELAN T, KANAGARAJ J, PANDA R C. Recent trends in fungal laccase for various industrial applications: an eco-friendly approach: a review[J]. Biotechnology and Bioprocess Engineering, 2016,21(1):19-38. DOI: 10.1007/s12257-015-0278-7.
[19] WANG Z X, LIU J Y, NING Y W, et al. Eichhornia crassipes: Agro-waster for a novel thermostable laccase production by Pycnoporus sanguineus SYBC-L1[J]. Journal of Bioscience and Bioengineering, 2017,123(2):163-169. DOI: 10.1016/j.jbiosc.2016.09.005.
[20] SCHEIBLBRANDNER S, BRESLMAYR E, CSARMAN F, et al. Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells[J]. Scientific Reports, 2017,7:13688. DOI:10.1038/s41598-017-13734-0.
[21] 周稳, 管政兵, 蔡宇杰, 等. 芽孢杆菌漆酶的研究进展[J]. 微生物学通报, 2015,42(7):1372-1383. DOI: 10.13344/j.microbiol.china.140781.
ZHOU W, GUAN Z B, CAI Y J, et al. Progress in the Bacillus laccase[J]. Microbiology China, 2015,42(7):1372-1383.
[22] SONDHI S, SHARMA P, SAINI S, et al. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4[J]. PLoS One, 2014,9(5):e96951. DOI: 10.1371/journal.pone.0096951.
[23] MARTINS L O, SOARES C M, PEREIRA M M, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat[J]. Journal of Biological Chemistry, 2002,277(21):18849-18859. DOI: 10.1074/jbc.M200827200.
[24] LIU H, CHENG Y, DU B, et al. Overexpression of a novel thermostable and chloride-tolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization[J]. PLoS One, 2015,10(3):e0119833. DOI: 10.1371/journal.pone.0119833.
[25] 王天女, 李国富, 赵敏, 等. 重组血红密孔菌漆酶在染料脱色中的应用[J]. 南京林业大学学报(自然科学版), 2016,40(1):92-96. DOI:10.3969/j.issn.1000-2006.2016.01.015.
WANG T N, LI G F, ZHAO M, et al. Application of recombinant Pycnoporus sanguineus laccase in dye decolorization[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016,40(1):92-96.
[26] REISS R, IHSSEN J, THONY-MEYER L. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum[J]. BMC Biotechnology, 2011,11:9. DOI: 10.1186/1472-6750-11-9.
[27] LI H X, ZHANG R J, TANG L, et al. In vivo and in vitro decolorization of synthetic dyes by laccase from solid state fermentation with Trametes sp. SYBC-L4[J]. Bioprocess and Biosystems Engineering, 2014,37(12):2597-2605. DOI: 10.1007/s00449-014-1237-y.
[28] CAMPOS P A, LEVIN L N, WIRTH S A. Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463[J]. Process Biochemistry, 2016,51(7):895-903. DOI: 10.1016/j.procbio.2016.03.015.
[29] SHI X W, LIU Q, MA J S, et al. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities[J]. Biotechnology Letters, 2015,37(11):2279-2288. DOI:10.1007/s10529-015-1914-1.

Last Update: 2018-09-15