我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

马尾松育种进程中的遗传增益与遗传多样性变化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年05期
Page:
196-200
Column:
研究简报
publishdate:
2018-09-15

Article Info:/Info

Title:
Changes of genetic gain & genetic diversity in the breeding process of Pinus massoniana
Article ID:
1000-2006(2018)05-0196-05
Author(s):
FENG Yuanheng12 YANG Zhangqi 1* LI Huogen 2 XU Huilan1
1. Guangxi Institute of Forestry Science,Nanning 530002,China; 2. Key Lab of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
Keywords:
masson pine(Pinus massoniana) genetic improvement genetic diversity genetic gain SSR
Classification number :
S722.3+3
DOI:
10.3969/j.issn.1000-2006.201706022
Document Code:
A
Abstract:
【Objective】 Provide theoretical support for the development of long-term breeding strategies and elite varieties for masson pine(Pinus massoniana). Additionally, the changes in genetic diversity and gain of Guangxi masson pine in the breeding process were analyzed, and the feasibility of obtaining improved effects by the design of breeding population structure and the selection method was discussed. 【Method】 The genetic diversities of the natural, first-generation, 1.5-generation and second-generation breeding populations were analyzed by the SSR molecular marker technique. The corresponding genetic gains were estimated basing on the genetic test results. 【Result】 In the first-generation of genetic improvement, the gain of wood volume and loss of low-frequency alleles for masson pine were approximately 32% and 14%, respectively. The Shannon diversity index(I)remained unchanged, but the observed heterozygosity(Ho)increased nearly 27%. In the 1.5-generation of genetic improvement, the gain of wood volume and loss of low-frequency alleles were 19.34% and 16%, respectively. The I and inbreeding coefficient decreased 6% and 20%, respectively, whereas Ho remained unchanged. In the second-generation of genetic improvement, the gain of wood volume and loss of low-frequency alleles were 23.68% and 12%, respectively. The I, Ho and inbreeding coefficient decreased approximately 25%, 20% and 47%, respectively. 【Conclusion】 During the three processes of genetic improvement of Masson pine in Guangxi, the genetic gain was high, and the loss of genetic diversity was relatively low. The degree of inbreeding was also effectively reduced. It is suggested that the selection strategy was effective in striking a balance between the genetic gain and genetic diversity.

References

[1] KANG K S, BILA A D, LINDGREN D, et al. Predicted drop in gene diversity over generations in the population where the fertility varies among individuals[J]. Silvae Genetica, 2001,50(5): 200-205.
[2] LINDGREN D, PRESCHER F. Optimal clone number for seed orchards with tested clones[J]. Silvae Genetica, 2005, 54(1):80-92. DOI:10.1515/sg-2005-0013.
[3] MAHONEY II, BERNSTEIN B, WOLFF J. FHWA's maintenance decision support system project: results and recommendations[J]. Transportation Research Record, 2005,1911(1): 133-142. DOI: 10.3141/1911-13.
[4] 秦国峰,周志春.中国马尾松优良种质资源[M]. 北京:中国林业出版社,2012.
[5] 冯源恒,杨章旗,李火根,等. 不同时期广西马尾松优良种源的遗传多样性变化趋势[J]. 南京林业大学学报(自然科学版),2016,40(5):41-46. DOI:10.3969/j.issn.1000-2006.2016.05.007.
FENG Y H, YANG Z Q, LI H G, et al. Study on genetic diversity change for nearly 50 years in superior provenances of Pinus massoniana in Guangxi[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016,40(5): 41-46.
[6] 黄永利.马尾松天然林优良林分选择效应研究[J]. 广西林业科学, 2001,30(1):32-34. DOI: 10.3969/j.issn.1006-1126.2001.01.008.
HUANG Y L. Study on the selection effect of excellent stand in the natural forest of Pinus massoniana[J]. Guangxi Forestry Science,2001, 30(1):32-34.
[7] DOYLE J. Isolation of plant DNA from fresh tissue[J]. Focus, 1990, 12(1):13-15.
[8] FENG Y H, YANG Z Q, WANG J, et al. Development and characterization of SSR markers from Pinus massoniana and their transferability to P. elliottii, P. caribaea and P. yunnanensis[J]. Genet Mol Res, 2014, 13(1): 1508-1513. DOI:10.4238/2014.March.12.2.
[9] 杨章旗,冯源恒,吴东山. 细叶云南松天然种源林遗传多样性的 SSR分析[J]. 广西植物, 2014, 34(1):10-14. DOI:10.3969/j.issn.1000-3142.2014. 01.003.
YANG Z Q, FENG Y H, WU D S. Analysis of genetic diversity of Pinus yunnanensis var. tenuifolia nature populations by SSR marker[J]. Guihaia, 2014, 34(1): 10-14.
[10] YEH F C, YANG R C, BOYLE T B, et al. POPGENE, the user-friendly shareware for population genetic analysis[EB/OL]. Molecular Biology and Bio-technology Center, University of Alberta, Canada(1997).http:www.ua/Belt.c/fyyh.
[11] HARTL D L, CLARK A G. Principles of population genetics[M]. 2ed. Sunderland, MA: Sinauer Associates, Inc Publishers, 1990(1):128-129.
[12] SHANNON C E, WEAVER W. The mathematical theory of communication[M]. Urbana: Univ of Illinois Press, 1949.
[13] NEI M. Analysis of gene diversity in subdivided populations[J]. Proc Natl Acad Sci USA, 1973, 70(12): 3321-3323. DOI:10.1073/pnas.70.12. 3321.
[14] WANG J. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients[J]. Mol Ecol Resour, 2011, 11(1): 141-145. DOI:10.1111/j.1755-0998. 2010.02885.x.
[15] WANG J L. Triadic IBD coefficients and applications to estimating pair wise relatedness [J]. Genetics Research, 2007,89(3):135-153. DOI:10. 1017/s0016672307008798.
[16] LYNCH M, RITLAND K. Estimation of pairwise relatedness with molecular markers[J]. Genetics, 1999, 152(4): 1753-1766.
[17] RITLAND K. Estimators for pairwise relatedness and individual inbreeding coefficients[J]. Genetical Research, 1996, 67(2): 175. DOI:10. 1017/s0016672300033620.
[18] MILLIGAN B G. Maximum-likelihood estimation of relatedness[J]. Genetics, 2003, 163(3): 1153-1167.
[19] 黄少伟, 钟伟华, 陈炳铨.火炬松半同胞子代配合选择的遗传增益估算[J]. 林业科学, 2006, 42(4):33-37. DOI:10.3321/j.issn:1001-7488.2006. 04.006.
HUANG S W, ZHONG W H, CHEN B Q. Estimation on genetic gains of combined selection for growth traits of half-sib progeny of Pinus taeda[J]. Scientia Silvae Sinicae, 2006,42(4):33-37.
[20] 顾万春. 统计遗传学[M].北京:科学出版社, 2004.
[21] 冯源恒,李火根,杨章旗,等. 广西马尾松第2代育种群体的组建[J]. 林业科学,2017,53(1):54-61.
FENG Y H, LI H G, YANG Z Q, et al. Construction of second generation breeding population of Pinus massoniana in Guangxi[J]. Scientia Silvae Sinicae, 2017,53(1):54-61.
[22] WHITE T L, ADAMS W T, NEALE D B. Forest genetics[Z]. Centre for Advanced Biomedical Imaging, 2007.
[23] JARVIS S F, BORRALHO N M G, POTTS B M. Implementation of a multivariate BLUP model for genetic evaluation of Eucalyptus globulus in Australia[C]// POTTS B M, BORRALHO N M G, REID J B, et al. Symposium on Eucalypt plantations: improving fibre yield and quality. Proceedings CRCTHF-IUFRO conference, Hobart, Tasmania. CRC for Temperate Hardwood Forestry, Australia, 1995:212-216.

Last Update: 2018-09-15