我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

海拔变化对黄山松阔叶混交林土壤有机碳组分的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年06期
Page:
106-112
Column:
研究论文
publishdate:
2018-12-15

Article Info:/Info

Title:
Effects of altitude change on soil organic carbon fractions in Pinus taiwanensis and broad-leaved mixed forest
Author(s):
MENG Miaojing1 ZHANG Jinchi1* GUO Xiaoping1 WU Jiasen1 ZHAO Youpeng1 YE Lixin2 LIU Shenglong12
(1.Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 2.The Fengyang Mountain Management Office of Fengyang Mountain-Baishanzu National Nature Reserve in Zhejiang Province, Longquan 323700, China)
Keywords:
soil organic carbon chemical composition altitude nuclear magnetic resonance spectroscopy(NMR) Pinus taiwanensis and broad-leaved mixed forest
Classification number :
S719
DOI:
10.3969/j.issn.1000-2006.201712031
Document Code:
A
Abstract:
【Objective】 This study was performed to understand the effects of altitude on soil organic carbon chemical composition in a Pinus taiwanensis broad-leaved mixed forest and its preliminary influencing mechanism and changes in soil organic carbon stability in typical stands after global warming. 【Method】On the basis of the distribution range of Pinus taiwanensis on Fengyang Mountain, 1 200, 1 500, and 1 800 m were selected as the three altitudinal gradients, and three standard plots(20 m × 20 m)were set at each elevation gradient and sampled in August 2016. Solid-state nuclear magnetic resonance spectros copy was used to determine the chemical composition of soil organic carbon. 【Result】With an increase in elevation, the soil nutrient content increased and then decreased, and soil soluble carbon and phosphorus content at each elevation between significant difference(P < 0.05). With an increase in altitude, the N-alkyl carbon and alkyl carbon content initially increased and then decreased, and the aromatic carbon, phenolic carbon and carbonyl carbon content initially decreased and then increased. O-alkyl carbon and a cetal carbon content decreased with the increase in altitude at 1 200 m above sea level; at 1 200 m, the carbonyl carbon content was significantly different from those at the other two elevations(P<0.05). Non-metric multidimensional scaling ordination showed significant differences in soil organic carbon fractions at different elevations, mainly because of changes in carbonyl carbon, alkyl carbon, and Zalkyl carbon/ZO-alkyl carbon. Redundancy analysis showed that the soil total phosphorus content and soil bulk density have a great influence on the molecular structure complexity of organic carbon, soil total nitrogen content and organic carbon stability are significantly positively related. 【Conclusion】The physicochemical properties of altitude changes caused by the change of soil are important factors that affect the stability of soil organic carbon. Soil organic carbon has the lowest stability at 1 800 m, and low temperature can affect the decomposition of soil organic carbon, thus affecting the stability of soil organic carbon.

References

[1] SCHMIDT M W, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49-56. DOI: 10.1038/nature10386.
[2] FONTAINE S, BAROT S, BARRé P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450(7167): 277-280. DOI: 10.1038/nature06275.
[3] ALBALADEJO J, ORTIZ R, GARCIA-FRANCO N, et al. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain [J]. Journal of Soils and Sediments, 2012, 13(2): 265-277. DOI:10.1007/s11368-012-0617-7.
[4] 李婷, 赵世伟, 张扬, 等. 黄土区次生植被恢复对土壤有机碳官能团的影响[J]. 生态学报, 2011,31(18):5199-5206.
LI T, ZHAO S W, ZHANG Y, et al. Effect of revegetation on functional groups of soil organic carbon on the Loess Plateau[J]. Acta Ecologica Sinica, 2011, 31(18):5199-5206.
[5] WANG H, LIU S R, WANG J X, et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition[J]. Scientific Reports,2016, 6:27097. DOI:10.1038/srep27097.
[6] LI Z, ZHAO B, WANG Q, et al. Differences in chemical composition of soil organic carbon resulting from long-term fertilization strategies[J]. PloS One, 2015, 10(4):e124359. DOI: 10.1371/journal. pone. 0124359.
[7] 朱凌宇, 潘剑君, 张威. 祁连山不同海拔土壤有机碳库及分解特征研究[J]. 环境科学, 2013,34(2):668-675.
ZHU L Y, PAN J J, ZHANG W. Study on soil organic carbon pools and turnover characteristics along an elevation gradient in Qilian Mountain.[J]. Environmental Science, 2013, 34(2):668-675.
[8] CHEN C R, XU Z H, MATHERS N J. Soil carbon pools in adjacent natural and plantation forests of subtropical australia[J]. Soil Science Society of America Journal, 2004,68(1):282. DOI:10.2136/sssaj2004.2820.
[9] LI Y, ZHANG J, CHANG S X, et al. Converting native shrub forests to Chinese chestnut plantations and subsequent intensive management affected soil C and N pools[J]. Forest Ecology and Management, 2014, 312:161-169. DOI: 10.1016/j.foreco.2013.10.008.
[10] 毛霞丽, 陆扣萍, 孙涛, 等. 长期施肥下浙江稻田不同颗粒组分有机碳的稳定特征[J]. 环境科学, 2015,36(5):1827-1835. DOI: 10.13227/j.hjkx.2015.05.043.
MAO X L, LU K P, SUN T, et al. Effect of long-term fertilizer application on the stability of organic carbon in particle size fractions of a paddy soil in Zhejiang Province, China [J]. Environmental Science, 2015, 36(5):1827-1835.
[11] 康健, 孟宪法, 许妍妍, 等. 不同植被类型对滨海盐碱土壤有机碳库的影响[J]. 土壤, 2012,44(2):260-266. DOI: 10.3969/j.issn.0253-9829.2012.02.014.
KANG J, MENG X F, XU Y Y, et al. Effects of different vegetation types on soil organic carbon pool in costal saline-alkali soils of Jiangsu Province[J]. Soils, 2012, 44(2):260-266.
[12] TAN Q, WANG G. Decoupling of nutrient element cycles in soil and plants across an altitude gradient[J]. Scientific Reports, 2016, 6:34875. DOI: 10.1038/srep34875.
[13] ZHANG L, WANG A, YANG W, et al. Soil microbial abundance and community structure vary with altitude and season in the coniferous forests, China [J]. Journal of Soils and Sediments, 2016, 17(9): 2318-2328. DOI: 10.1007/s11368-016-1593-0.
[14] JI H, ZHUANG S, ZHU Z, et al. Soil organic carbon pool and its chemical composition in Phyllostachy pubescens forests at two altitudes in Jian’ou City, China[J]. Plos One, 2015,10(12):e0146029. DOI: 10.1371/journal.pone.0146029.
[15] 李淑娴, 谭艳, 陈颖, 等. 黄山松不同生理生化指标随海拔高度变化趋势[J]. 东北林业大学学报, 2010,38(6):9-12. DOI:10.3969/j.issn.1000-5382.2010.06.003
LI S X, TAN Y, CHEN Y, et al. Variation trends of physiological and biochemical indexes of Pinus taiwanensis with increasing elevation[J]. Journal of Northeast Forestry University, 2010, 38(6):9-12.
[16] GUO X, MENG M, ZHANG J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J]. Scientific Reports, 2016, 6(1). DOI:10.1038/srep29607.
[17] FAITHFULL N. Methods in agricultural chemical analysis [M]. London: Centre for Agiculture and Bio Sciences Inter, 2003.
[18] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:1-638.
LU R K. Methods for agricultural chemical analysis of soil[M]. Beijing: Agricultural Science and Technology Press of China, 2000.
[19] SCHMIDT M W I, KNICKER H, HATCHER P G, et al. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid [J]. European Journal of Soil Science, 1997, 48(2): 319-328. DOI:10.1111/j.1365-2389.1997.tb00552.x
[20] MATHERS N J, XU Z, BERNERSPRICE S J, et al. Hydrofluoric acid pre-treatment for improving 13C CPMAS NMR spectral quality of forest soils in south-east Queensland, Australia[J]. Australian Journal of Soil Research, 2002, 40(4):665-674.
[21] GUO X, MENG M, ZHANG J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J]. Scientific Reports, 2016, 6(1):29607. DOI: 10.1038/srep29607.
[22] OJSANEN J, BLANCHET G, KINDT R, et al. Vegan: community ecology package. V. 0.5. 2 [CP/OL].(2013)[2016]https://github.com/veganders/vegan.
[23] DIELEMAN W I J, VENTER M, RAMACHANDRA A, et al. Soil carbon stocks vary predictably with altitude in tropical forests: implications for soil carbon storage[J]. Geoderma, 2013, 204(4):59-67. DOI:10.1016/j.geoderma.2013.04.005.
[24] MANOJLOCIC M, CABILOVAKI R, SITAULA B. Soil organic carbon in Serbian Mountain soils: Effects of land use and altitude [J]. Polish Journal of Environmental Studies, 2011, 20(4):977-986.
[25] DU B, KANG H, PUMPANEN, et al. Soil organic carbon stock and chemical composition along an altitude gradient in the Lushan Mountain, subtropical China[J]. Ecological Research, 2014, 29(3):433-439. DOI: 10.1007/s11284-014-1135-4.
[26] 郜士垒, 何宗明, 黄志群, 等. 杉木宿存叶片的分解及稳定性碳氮同位素和化学组成[J]. 生态学杂志, 2015,34(9):2457-2463.
GAO S L, HE Z M, HUANG Z Q, et al. Decomposition, carbon and nitrogen stable isotopes and chemical composition of dead leaves clinging in a Chinese fir(Cunninghamia lanceolata)plantation [J]. Chinese Journal of Ecology, 2015, 34(9):2457-2463.
[27] ZECH W, HAUMAIER L, HEMPFLING R, et al. Ecological aspects of soil organic matter in tropical land use[C]// NACCARTHY P, CLAPP C E, MALCOLM R A, et al. Humic substances in soil and crop sciences: selected Readings. Proceedings of Symposium of the International Humic Substances Society, Chicago, Illinois: D, 1990:187-202. DOI: 10.2136/1990.humicsubstances.c8.
[28] BOENI M, BAYER C, DIECKOW J, et al. Organic matter composition in density fractions of Cerrado Ferralsols as revealed by CPMAS 13C NMR: influence of pastureland, cropland and integrated crop-livestock[J]. Agriculture Ecosystems & Environment, 2014, 190:80-86. DOI:10.1016/j.agee.2013.09.024.
[29] PéREZ-CRUZADO C, SANDE B, OMIL B, et al. Organic matter properties in soils afforested with Pinus radiata[J]. Plant and Soil, 2014, 374(1):381-398. DOI: 10.1007/s11104-013-1896-5.
[30] DOU S, ZHANG J J, LI K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil [J]. European Journal of Soil Science, 2008, 59(3):532-539. DOI:10.1111/j.1365-2389.2007.01012.x.
[31] 张勇, 胡海波, 黄玉洁, 等. 不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J]. 环境科学研究, 2015,28(12):1870-1878.
ZHANG Y, HU H B, HUANG Y J, et al. Effects of different vegetation restoration models on molecular structure and stability of soil organic carbon [J]. Research of Environmental Sciences, 2015, 28(12):1870-1878.
[32] 商素云, 姜培坤, 宋照亮, 等. 亚热带不同林分土壤表层有机碳组成及其稳定性[J]. 生态学报, 2013,33(2):416-424. DOI: 10.5846/stxb201111301831.
SHANG S Y, JIANG P K, SONG Z L, et al. Composition and stability of organic carbon in the top soil under different forest types in subtropical China [J]. Acta Ecologica Sinica, 2013, 33(2):416-424.
[33] WANG H, LIU S R, MO J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China [J]. Ecological Research, 2010,25(6):1071-1079. DOI: 10.1007/s11284-010-0730-2
[34] POMILIO A B, LEICACH S R, GRASS M Y, et al. Constituents of the root exudate of Avena fatua grown under far-infrared-enriched light[J]. Phytochemical Analysis, 2015, 11(5):304-308. DOI: 10.1002/1099-1565(200009/10)11.
[35] HUANG Z, XU Z, CHEN C, et al. Changes in soil carbon during the establishment of a hardwood plantation in subtropical Australia [J]. Forest Ecology and Management, 2008, 254(1):46-55. DOI:10.1016/j.foreco. 2007.07.021.
[36] WILDING L P, SMECK N E, HALL G F. Pedogenesis and soil taxonomy: the soil orders[M]. Amsterdam, Netherland: 1983.
[37] FU C, WEN G. Several issues on aridification in the Northern China[J]. Climatic & Environmental Research, 2002, 7(1):22-29. DOI: 10.3969/j.issn.1006-9585.2002.01.003.
[38] MI N S, LIU J, YU G, et al. Soil inorganic carbon storage pattern in China[J]. Global Change Biology, 2010, 14(10):2380-2387. DOI:10.1016/j.carbon.2006.05.034.
[39] LI Z P, HAN F X, SU Y, et al. Assessment of soil organic and carbonate carbon storage in China[J]. Geoderma, 2007, 138(1): 119-126. DOI:10.1016/j.geoderma.2006.11.007.
[40] 祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报, 2011,31(18):5207-5216.
ZU Y G, LI R, WANG W J, et al. Soil organic and inorganic carbon contents in relation to soil physicochemical properties in northeastern China[J]. Acta Ecologica Sinica, 2011, 31(18): 5207-5216.
[41] 肖胜生. 温带半干旱草地生态系统碳固定及土壤有机碳库对外源氮输入的响应[D]. 北京:中国科学院,2010.
XIAO S S. Carbon sequestration in temperate semi-arid grassland ecosystem and response of soil organic carbon pool to exogenous nitrogen input [D]. Beijing: Chinese Academy of Sciences, 2010.
[42] 张秀兰, 王方超, 方向民, 等. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应[J]. 应用生态学报, 2017,28(2):449-455. DOI:10.13287/j.1001-9332.201702.024.
ZHANG X L, WANG F C, FANG X M, et al. Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical China.[J]. The Journal of Applied Ecology, 2017, 28(2): 449-455.

Last Update: 2018-11-30