我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

锯材大花序桉生长和材性的综合指数选择(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年01期
Page:
1-8
Column:
研究论文
publishdate:
2019-01-28

Article Info:/Info

Title:
Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber
Article ID:
1000-2006(2019)01-0001-08
Author(s):
LI Changrong1 CHEN Jianbo1 GUO Dongqiang1 WENG Qijie2 LU Cuixiang1 LI Jianfan3 ZHOU Wei1* GAN Siming2*
1.Guangxi Forestry Research Institute, Nanning 530002, China; 2.Research Institute of Tropical Forestry, CAF, Guangzhou 510520, China; 3.Yulin Forestry Research Institute, Yulin 537501, China
Keywords:
Eucalyptus cloeziana provenance/family growth wood property comprehensive index selection
Classification number :
S718.46
DOI:
10.3969/j.issn.1000-2006.201805018
Document Code:
A
Abstract:
【Objective】 Eucalyptus cloeziana is one of the most promising Eucalyptus species for high-value solid wood production and a saw timber breeding objective has been developed for southern China. The purpose of this research was to select provenances and families with superior growth and wood properties.【Method】 The 9.5 year-old provenance/family testing forest of E. cloeziana was used as the research materials. The E. cloeziana testing forest was comprised of 115 open-pollinated families of 17 provenances were planted at the Yulin Forestry Research Institute(110°09’E, 22°39’N), Guangxi Province, China in May 2004. The progeny seeds were provided by the Australian Tree Seed Centre(Canberra, Australia). The trial was laid out in randomized complete blocks along the contours, with 30 replicates of single tree plots. Wood mechanical properties at 9.5 years of age, including basic density(ρBD), green density(ρGD), modulus of elasticity in static bending(EMOE), modulus of rupture(σMOR), and compressive strength parallel to grain(σc)were measured using near-infrared(NIR)spectroscopy. Multi-trait selection incorporated tree height(H), diameter at breast height(D), individual tree volume(V), ρGD, ρBD, EMOE, σMOR and σc using the Smith-Hazel index selection procedure. 【Results】 The trial averages for D, H, V, ρGD, ρBD, EMOE, σMOR and σc were 20.6 cm, 20.0 m, 0.307 m3, 1.109 g/cm3, 0.659 g/cm3, 14.7 GPa, 158.2 MPa and 63.3 MPa, respectively. Growth and wood properties exhibited significant differences among provenances(P < 0.01)and among families within a provenance(P < 0.05). The significant genetic variation for these traits indicated the strong potential for genetic improvement through selection at both provenance and family levels. Genetic correlations were significantly positive between growth traits and were not different from zero between wood properties. The additive genetic correlations were not significantly negative between D and ρBD, but were extremely significantly negative between D and EMOE, ρGD and σMOR, and significantly negative between D and σc. The genetic advance of D direct selection was 410.2% and the effect of D direct selection was the best. The indirect selection efficiency of D to V was 174.3%, and the indirect selection of ρBD to other wood properties was positive. ρBD to σc had the highest selection efficiency. The superior provenances selected using index selection were from the southern coastal area of the native range of the species in Australia. 【Conclusion】 The wood mechanical properties of 9.5 year-old E. cloeziana were similar to that of Pterocarpus L., which is a well-known high-value timber used for the production of furniture. The additive genetic correlations were negatively significant between growth traits and wood mechanical traits, posing a challenge for concomitant improvement of growth and wood traits. The indirect selection effect of growth to wood properties was small, whereas ρBD had a favorable indirect selection effect with other wood properties. Trees could be selected using the comprehensive index selection method to identify a production population that would provide seed with inherently superior growth and wood properties required to develop high-value forest products.

References

[1] PRYOR L D, JOHNSON L A S. A classification of the Eucalypts [J]. Taxon, 1971, 21(1): 192. DOI:10.230711219266.
[2] TUMBULL J W. Geographic variation in Eucalyptus cloeziana [D]. Canberra, Australia: Australian National University, 1979.
[3] 王豁然. 桉树生物学概论[M]. 北京: 科学出版社, 2010.
WANG H R. An introduction to the biology of Eucalyptus [M]. Beijing: Science Press, 2010.
[4] 吴坤明, 吴菊英, 徐建民. 海南岛西部地区桉树树种/种源试验[J]. 海南林业科技, 1991,(2): 13-17.
WU K M, WU J Y, XU J M. Eucalyptus spicies/provenance trial in western Hannan [J]. Hannan Forestry Science and Technology, 1991(2): 13-17.
[5] 叶露, 陈健波, 项东云, 等. 大花序桉种源/家系试验的早期研究[J]. 广西林业科学, 2007, 36(4): 187-191. DOI:10.3969/j.issn.1006-1126.2007.04.003.
YE L, CHEN J B, XIANG D Y, et al. Primary research on provenance and family trials of Eucaplyptus cloeziana[J]. Guangxi Forestry Science, 2007, 36(4): 187-191.
[6] 赵汝玉, 陆钊华, 徐建民, 等. 韦塔桉与大花序桉在粤中地区的生长表现[J]. 热带林业, 2006, 34(3): 31-33. DOI:10.3969/j.issn.1672-0938.2006.03.009.
ZHAO R Y, LU Z H, XU J M, et al. Growth performance of Eucalyptus wetarensis and Eucalyptus cloeziana in the middle district of Guangdong [J]. Tropical Forestry, 2006, 34(3): 31-33.
[7] NGUGI M R, DOLEY D, HUNT M A, et al. Physiological responses to water stress in E. cloeziana and E. argophloia seedlings [J]. Trees, 2004, 18(4): 381-389. DOI: 10.1007/s00468-003-0316-5.
[8] MARQUES O G, ANDRADE H B, RAMALHO M A P. Assessment of the early selection efficiency in Eucalyptus cloeziana F.Muell in the northwest of Minas Gerais state(Brazil)[J]. Silvae Genetica, 1996, 45(5/6): 359-361.DOI:10.1080/02827589609382953.
[9] 周维, 李昌荣, 陈健波, 等. 大花序桉种源遗传变异及适应性研究[J]. 西南林业大学学报, 2014, 34(4): 36-41. DOI:10.3969/j.issn.2095-1914.2014.04.007.
ZHOU W, LI C R, CHEN J B, et al. Study on the variation and adaptability in provenance of Eucalyptus cloeziana [J]. Journal of Southwest Forestry University, 2014, 34(4): 36-41.
[10] LI C, WENG Q, CHEN J B, et al. Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell [J]. New Forests, 2017, 48(1): 33-49. DOI: 10.1007/s11056-016-9554-4.
[11] 杨中宁, 项东云, 陈健波, 等. 大花序桉种源木材纤维特性变异研究[J]. 广西林业科学, 2011, 40(1): 8-11. DOI:10.3969/j.issn.1006-1126.2011.01.003.
YANG Z N, XIANG D Y, CHEN J B, et al. Study on variation of fiber characteristics of Eucaplyptus cloeziana provenances [J]. Guangxi Forestry Science, 2011, 40(1): 8-11.
[12] 李昌荣, 项东云, 陈健波, 等. 大花序桉木材基本密度的变异研究[J]. 中南林业科技大学学报, 2012, 32(6): 158-162. DOI:10.14067/j.cnki.1673-923x.2012.06.010.
LI C R, XIANG D Y, CHEN J B, et al. Study on wood basic density variation of Eucalyptus cloeziana [J]. Journal of Central South University of Forestry & Technology, 2012, 32(6): 158-162.
[13] 周维, 卢翠香, 杨中宁, 等. 大花序桉种源幼林木材力学性质研究[J]. 西南林业大学学报, 2014, 34(6): 75-80. DOi:10.3969/j.issn.2095-1914.2014.06.013.
ZHOU W, LU C X, YANG Z N, et al. Study on juvenile wood’s mechanical properties of Eucalyptus cloeziana provenances [J]. Journal of Southwest Forestry University, 2014, 34(6): 75-80.
[14] 翟新翠, 项东云, 陈健波, 等. 大花序桉种源/家系遗传变异与早期选择研究[J]. 广西林业科学, 2007, 36(1): 26-30. DOI:10.3969/j.issn.1006-1126.2007.01.007.
ZHAI X C, XIANG D Y, CHEN J B, et al. Genetic variation and early selection of the provenances/families of Eucalyptus cloeziana [J]. Guangxi Forestry Science, 2007, 36(1): 26-30.
[15] 项东云, 王明庥, 黄敏仁, 等. 大花序桉木材抗弯弹性模量变异研究[J]. 华南农业大学学报, 2012, 33(1): 73-76. DOI:10.3969/j.issn.1001-411X.2012.01.015.
XIANG D Y, WANG M X, HUANG M R, et al. Variations of modulus of elasticity in Eucalyptus cloeziana wood [J]. Journal of South China Agricultural University, 2012, 33(1): 73-76.
[16] 陈健波, 项东云, 张照远, 等. 大花序桉木材顺纹抗压强度变异研究[J]. 林业科技开发, 2009, 23(4): 63-66. DOI:10.3969/j.issn.1000-8101.2009.04.015.
CHEN J B, XIANG D Y, ZHANG Z Y, et al. Studies on longitudinal compressive strength variance of Eucalyptus cloeziana [J]. China Forestry Science and Technology, 2009, 23(4): 63-66.
[17] 盛志廉, 陈姚生. 数量遗传学[M]. 北京: 科学出版社, 1999.
SHENG Z L, CHEN Y S. Quantitative genetics[M]. Beijing: Science Press, 1999.
[18] 孙晓梅. 日本落叶松纸浆材优良家系选择及家系生长模型的研究[D]. 北京: 中国林业科学研究院, 2003.
SUN X M. Selection of superior Larix kaempferi families for pulpwood purpose and family-based growth simulation [D]. Beijing: China Academy of Forestry, 2003.
[19] 赖猛. 落叶松无性系遗传评价及早期选择研究[D]. 北京: 中国林业科学研究院, 2014.
LAI M. Genotypic evaluation and early selection of Larix clones [D]. Beijing: China Academy of Forestry, 2014.
[20] 管兰华, 潘惠新, 黄敏仁, 等. 美洲黑杨×欧美杨F1无性系的多性状联合选择[J]. 南京林业大学学报(自然科学版), 2005, 29(2): 6-10. DOI: 10.3969/j.issn.1000-2006.2005.02.002.
GUAN L H, PAN H X, HUANG M R, et al. Research on growth and wood properties joint genetic improvement of new clones of Poplus deltoids‘I-69’ × P.euramericana ‘I-45’ [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2005, 29(2): 6-10.
[21] 黄寿先, 施季森, 李力,等. 杉木纤维用材优良无性系的选择[J]. 南京林业大学学报(自然科学版), 2005, 29(5): 21-24. DOI: 10.3969/j.issn.1000-2006.2005.05.005.
HUANG S X, SHI J S, LI L, et al. Selection of superior clones of Chinese fir for fibre wood[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2005, 29(5): 21-24.
[22] 邓继峰, 张含国, 张磊, 等. 杂种落叶松F2代自由授粉家系纸浆材遗传变异及多性状联合选择[J]. 林业科学, 2011, 47(5): 31-39.
DENG J F, ZHANG H G, ZHANG L, et al. Genetic variations in pulpwood qualities of F2 generation of open-pollinated larch hybrid families and multi-traits selection[J]. Scientia Silvae Sinicae, 2011, 47(5): 31-39.
[23] 李艳霞, 张含国, 张磊, 等. 长白落叶松纸浆材优良家系多性状联合选择研究[J]. 林业科学研究, 2012, 25(6): 712-718. DOI: 10.3969/j.issn.1001-1498.2012.06.006.
LI Y X, ZHANG H G, ZHANG L, et al. Research on multi-trait selection of the superior families of Larix olgensis pulpwood [J]. Forest Research, 2012, 25(6): 712-718.
[24] 解懿妮, 莫晓勇, 彭仕尧, 等. 粤西21个桉树无性系早期性状遗传变异分析和无性系综合选择[J]. 南京林业大学学报(自然科学版), 2018, 42(3):73-80. DOI:10.3969/j.issn.1000-2006.201708010.
XIE Y N, MO X Y, PENG S Y,et al. Genetic variation analysis and early comprehensive selection of 21 Eucalyptus clones in western Guangdong Province, China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(3): 73-80.
[25] 岑巨延. 广西桉树人工林二元立木材积动态模型研究[J]. 华南农业大学学报, 2007, 28(1): 91-95. DOI: 10.3969/j.issn.1001-411X.2007.01.022.
CEN J Y. Study on two-way tree volume dynamic model of Eucalyptus plantations in Guangxi [J]. Journal of South China Agricultural University, 2007, 28(1): 91-95.
[26] 黄少伟, 谢维辉. 实用SAS编程与林业试验数据分析[M]. 广州: 华南农业大学出版社, 2001.
HUANG S W, XIE W H. Practical SAS programming and forestry trial data analysis[M]. Guangzhou: South China Agricultural University Press, 2001.
[27] 马育华. 植物育种的数量遗传学基础[M]. 南京: 江苏科学技术出版社, 1982.
MA Y H. Quantitative genetics in plant breeding [M]. Nanjing: Jiangsu Science and Technology Press,1982.
[28] COTTERILL P P, DEAN C A. Successful tree breeding with index selection [M]. Victoria: CSIRO, Division of Forestry and Forest Products, 1990.
[29] 李昌荣. 大花序桉生长和材性遗传变异及SSR关联分析[D]. 北京:中国林业科学研究院, 2017.
LI C R. Genetic variation and SSR association analyses in growth and wood properties in Eucalyptus cloeziana[D]. Beijing: Chinese Academy of Forestry, 2017.
[30] HEIN P R G, BOUVET J M, MANDROU E, et al. Age trends of microfibril angle inheritance and their genetic and environmental correlations with growth, density and chemical properties in Eucalyptus urophylla S.T. Blake wood [J]. Annals of Forest Science, 2012, 69(6): 681-691. DOI:10.1007/s13595-012-0186-3.
[31] HUNG T D, BRAWNER J T, MEDER R, et al. Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F. Muell to support tree breeding in Vietnam [J]. Annals of Forest Science, 2015, 72(2): 205-217. DOI: 10.1007/s13595-014-0426-9.
[32] STACKPOLE D J, VAILLANCOURT R E, AGUIGAR M, et al. Age trends in genetic parameters for growth and wood density in Eucalyptus globules [J]. Tree Genetics & Genomes, 2010, 6(2): 179-193. DOI:10.1007/s11295-009-0239-4.
[33] 张帆, 李黎, 张立, 等. 五种家具常用木材弹性常数及力学性能参数的测定[J]. 林业机械与木工设备, 2012(1): 16-19. DOI: 10.3969/j.issn.2095-2953.2012.01.004.
ZHANG F, LI L, ZHANG L, et al. Study of the determination of the elastic constants and mechanical property parameters of five kinds of wood commonly used in furniture[J]. Forestry Machinery &Woodworking Equipment, 2012(1): 16-19.
[34] WU S J, XU J M, LI G Y, et al. Genotypic variation in wood properties and growth traits of Eucalyptus hybrid clones in southern China [J]. New Forests, 2011, 42(1): 35-50. DOI: 10.1007/s11056-010-9235-7.
[35] PEGG R E, WEI J. Eucalyptus cloeziana potential at Dongmen state Forest Farm[R]. Nanning, Guangxi: China-Australia afforestation project at Dongmen State Forest farm, 1989.
[36] MARQUES O G J, ANDRADE H B, RAMALHO M A P. Assessment of the early selection efficiency in Eucalyptus cloeziana F. Muell in the northwest of Minas Gerais State(Brazil)[J]. Silvae Genetica, 1996, 45(5/6): 359-361.
[37] PIERCE B T. The nine year results of an E. cloeziana provenance trial series [R]. Pretoria, South Africa: Division of Forest Science and Technology, CSIR, 1992.

Last Update: 2019-01-28