我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

重金属铬胁迫对髯毛箬竹光合特性的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年01期
Page:
54-60
Column:
研究论文
publishdate:
2019-01-28

Article Info:/Info

Title:
Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure
Article ID:
1000-2006(2019)01-0054-07
Author(s):
MA Yingli GAO Yu YUAN Tingting DAI Li ZHANG Yufeng XIE Yinfeng*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Indocalamus barbatus McClure chromium stress photosynthetic characteristics chlorophyll fluorescence
Classification number :
Q945.78
DOI:
10.3969/j.issn.1000-2006.201712013
Document Code:
A
Abstract:
【Objective】 Considering the heavy metal pollution in the distribution area of Indocalamus barbatus McClure, the response of its photosynthetic characteristics to chromium(Cr)stress was evaluated. This should provide a basis for the study of physiological response mechanisms of I. barbatus under Cr stress and as a reference for ecological restoration in Cr-contaminated areas.【Method】 A pot culture experiment was used to study the effects of different Cr concentrations(0, 100, 400 and 800 mg/kg)on the photosynthetic characteristics of I. barbatus, using K2Cr2O7 as the Cr source. A Cr solution was prepared in distilled water and applied to the soil at 17:00 with two times. Plant growth was then observed regularly for two months. The relative chlorophyll content(SPAD), photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters were determined using a portable SPAD-502 chlorophyll meter and the Li-6400XT portable photosynthesis system.【Result】 Plants treated with a low concentration of Cr grew normally and had green leaves. Under the high concentration treatment, the leaves showed chlorotic changes and yellowing, and some were curled or dead. SPAD, net photosynthetic rate(Pn), stomatal conductance(Gs)and transpiration rate(Tr)initially increased and then decreased with increasing Cr concentrations, whereas intercellular CO2 concentration(Ci)showed an opposite trend. Pn was promoted at low Cr concentrations and was inhibited at the high Cr concentrations; the non-stomatal limiting factor was the main reason for the change in Pn. At the low Cr concentration, fluorescence parameters for the PSⅡ maximal photochemical efficiency(Fv/Fm), PSⅡ potential activity(Fv/F0), PSⅡ effective photochemical efficiency(Fv'/Fm'), PSⅡ actual photochemical efficiency(ηΦPSⅡ), electron transmission rate(RETR), and photochemical quenching(CPQC)increased, whereas those for non-photochemical quenching(CNPQ)decreased. This suggested that the improved Pn was related to the stimulation in photochemical activity and enhanced light-utilization efficiency in mesophyll cells. The increased “open” proportion of the PSⅡ reaction center and low heat dissipation were the main reasons for the improved light utilization. As Cr concentration and exposure time increased, Fv/Fm, Fv/F0, Fv'/Fm', ηΦPSⅡ, CPQC, and RETR generally presented a downward trend, whereas CNPQ showed an opposite pattern. These results indicated that long-term treatment with high concentrations of Cr damaged the photosynthetic apparatus, decreased photochemical activity, and resulted in significant photo-inhibition. The increase in CNPQ indicated that excess excitation energy could be dissipated in the form of heat energy, thereby protecting the photosynthetic apparatus from light damage and improving the resistance of plants to high concentrations of Cr. The enhanced CNPQ caused by the high Cr concentration led to a reduction in light-energy utilization efficiency; however, this is an important defense mechanism for light destruction in leaves. The dynamic changes in fluorescence parameters under stress showed that Fv/F0 and CNPQ were sensitive to the Cr concentration, and this variation presented a relatively broad range. Therefore, these two parameters could be used as a sensitive indicator to measure Cr stress induced damage and the degree of photo-inhibition. 【Conclusion】 Low levels of Cr stress could promote photosynthesis in I. barbatus, whereas long-term exposure to high levels of Cr stress damaged the photosynthetic apparatus, decreased photochemical activity, and caused significant photo-inhibition. Enhanced heat dissipation is an important protective mechanism against the photo-destruction of I. barbatus leaves under high Cr concentrations. Indocalamus barbatus McClure can adapt to certain concentrations of Cr stress in the environment and presents different photosynthetic response adjustment to different concentrations of Cr stress. Thus, Indocalamus barbatus McClure is a suitable plant material for the ecological restoration of Cr polluted areas.

References

[1] 裘波音. 水稻铬胁迫耐性的遗传分析与还原型谷胱甘肽缓解铬毒害的机理研究[D]. 杭州: 浙江大学, 2012.
QIU B Y. Genetic analysis of rice Gr-tolerance and mechanism study on GSH-alleviating effect on Cr toxicity[D]. Hangzhou: Zhejiang University,2012.
[2] 张志雯, 秦素平, 陈于和, 等. 硅对铬胁迫下小麦幼苗超微结构和铬吸收积累的影响[J]. 麦类作物学报, 2015, 35(4): 548-554. DOI:10.7606/j.issn.1009-1041.2015.04.16.
ZHANG Z W, QIN S P, CHEN Y H, et al. Effect of silicon on ultrastructure, chromium absorption and accumulation of wheat seedlings under chromium stress[J]. Journal of Triticeae Crops, 2015, 35(4): 548-554.
[3] 李晶晶, 彭恩泽. 综述铬在土壤和植物中的赋存形式及迁移规律[J]. 工业安全与环保, 2005, 31(3): 31-33. DOI:10.7606/j.issn.1009-1041.2015.204.16.
LI J J, PENG E Z. Summarization on the existing form and transferring rules of chromium in soil[J]. Industrial Safety and Environmental Protection, 2005, 31(3): 31-33.
[4] 梅磊, 李玲, DAUD M K, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1): 102-110. DOI: 10.11963/1002-7807.mlzsj.20171107.
MEI L, LI L, DAUD M K, et al. Advances on response and resistance to heavy metal stress in cotton[J]. Cotton Science, 2018, 30(1): 102-110.
[5] CHOUDHURY S, PANDA S K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense(Schwaegr.)Broth. under chromium and lead phytotoxicity[J]. Water, Air and Soil Pollution, 2005, 167(1-4):73-90. DOI:10.1007/s11270-005-8682-9.
[6] 邵云, 刘会娟, 胡永娟, 等. 土壤质地对铬胁迫下小麦灌浆期形态与旗叶光合特性的影响[J]. 麦类作物学报, 2012, 32(6): 1150-1155.DOI:10.7606/j.issn.1009-1041.2012.06.025.
SHAO Y, LIU H J, HU Y J. Effects of soil textures on morphology and photosynthetic characteristics of flag leaves of wheat during filing stage in chromium polluted soils[J]. Journal of Triticeae Crops,2012, 32(6): 1150-1155.
[7] 喻谨, 汤锋, 岳永德, 等. ICP-MS法分析10种箬竹属竹叶中矿质元素质量分数[J]. 东北林业大学学报, 2015, 43(2): 19-22,32. DOI:10.13759/j.cnki.dlxb.2015.02.002.
YU J, TANG F, YUE Y D, et al. Mineral element contents in ten species of leaves from Indocalamus by ICP-MS[J]. Journal of Northeast Forestry University, 2015, 43(2): 19-22,32.
[8] WANG T, YANG W H, XIE Y F, et al. Effects of exogenous nitric oxide on the photosynthetic characteristics of bamboo(Indocalamus barbatus McClure)seedlings under acid rain stress[J]. Plant Growth Regulation, 2017, 82(1): 69-78. DOI:10.1007/s10725-016-0239-y.
[9] 王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6):2018-2037.DOI:10.13227/j.hjkx.2012.06.007.
WANG A Y, HUANG S S, ZHONG G F, et al. Effect of Cr(VI)stress on growth of three herbaceous plants and their Cr uptake[J].Environment Science, 2012, 33(6): 2028-2037.
[10] BONET A, POSCHENRIEDER C, BARCELO J. Chromium Ⅲ-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content[J]. Journal of Plant Nutrition, 1991, 14(4): 403-414. DOI:10.1080/01904169109364211.
[11] 杨国远, 万凌琳, 雷学青, 等. 重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响[J]. 环境科学学报, 2014, 34(6): 1606-1614. DOI:10.13671/j.hjkxxb.2014.0221.
YANG G Y, WAN L L, LEI X Q, et al. Effects of lead and chromium on the growth, photosynthetic performance, and antioxidant activity of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1606-1614.
[12] SHANKER A K, DJANAGUIRAMAN M, SUDHAGAR R, et al. Diferential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram(Vigna radiata (L.)R.Wilczek. cv CO 4)roots[J]. Plant Science, 2004, 166(4): 1035-1043. DOI: 10.1016/ j. plantsci.2003.12.015.
[13] 顾艾博. 铬、铜胁迫对2种玉簪生长及生理特性的影响[D]. 长春: 吉林农业大学, 2014.
GU A B. Effects of chromium and copper stress on growth and physiological characteristics of two kinds of Hosta[D]. Changchun: Jilin Agricultural University, 2014.
[14] 王海珍, 韩路, 徐雅丽,等. 土壤水分梯度对灰胡杨光合作用与抗逆性的影响[J]. 生态学报, 2017, 37(2): 432-442. DOI: 10.5846 / stxb201507291597.
WANG H Z, HAN L, XU Y L,et al. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin, China[J]. Acta Ecologica Sinica, 2017, 37(2): 432-442.
[15] 何亚飞, 张珊珊, 孙鑫, 等. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版), 2016, 40(4): 49-55. DOI:10.3969/j.isn.100-206. 2016. 04.008.
HE Y F, ZHANG S S, SUN X, et al. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(4): 49-55.
[16] HU H, WANG L, ZHOU Q, et al. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice[J]. Environmental Science and Pollution Research, 2016, 23(9): 8902-8916. DOI:10.1007/s11356-015-5962-9.
[17] 王碧霞, 肖娟, 冯旭, 等. 铬胁迫对葎草雌雄植株光合生理特性的不同影响[J]. 草业学报, 2016, 25(7): 131-139. DOI:10.11686/cyxb2015436.
WANG B X, XIAO J, FENG X, et al. Effects of Chromium stress on physiological and ecophysiological characteristics of male and female plants of Humulus scandens[J]. Acta Prataculturae Sinica, 2016, 25(7): 131-139.
[18] PANDEY N, SHARMA C P. Chromium interference in iron nutrition and water relations of cabbage[J]. Environmental and Experimental Botany, 2003, 49(3): 195-200. DOI:10.1016/s0098-8472(02)00088-6.
[19] 陈晶, 穆燕, 陈明, 等. 盐肤木对重金属铬胁迫的生理生化反应研究[J]. 生态科学, 2017, 36(2):26-31. DOI:10.14108/j.cnki.1008-8873.2017.02.004.
CHEN J, MU Y, CHEN M, et al. Response of physiology and biochemistry of Rhus chinensis to heavy metal chromium stress [J]. Ecological Science, 2017, 36(2): 26-31.
[20] 王碧霞, 胥晓, 李霄锋. 葎草幼苗光合生理特性对铬胁迫的响应[J]. 草业学报, 2014, 23(4): 181-188. DOI:10.11686/cyxb20140422.
WANG B X, XU X, LI X F. Physiological and ecophysiological response of Humulus scandens seedlings chromium stress[J]. Acta Prataculturae Sinica, 2014, 23(4): 181-188.
[21] FARIAS M E, MARTINAZZO E G, BACARIN M A. Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea[J]. Revista Ciencia Agronômica, 2016, 47(1): 633-643. DOI: 10.5935 /1806-6690.20160021.
[22] BJORKMAN O. High-irradiance stress in higher plants and interaction with other stress factors[J]. Progressin Photosynthesis Research, 1987, 4: 11-18. DOI: 10.1007/978-94-017-0519-6_2.
[23] SUBHASH N, WENZELl O, LICHTENTHALER H K. Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants[J]. Remote Sensing of Environment, 1999, 69(3): 215-213. DOI: 10.1016/S0034-4257(99)00029-2.

Last Update: 2019-01-28