我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

伏牛山森林土壤有机碳密度与环境因子的关联性分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年01期
Page:
83-90
Column:
研究论文
publishdate:
2019-01-28

Article Info:/Info

Title:
Correlation between forest soil organic carbon density and environmental factors in Funiu Mountain, Henan Province
Article ID:
1000-2006(2019)01-0083-08
Author(s):
TIAN YaowuLIU YifengWANG CongWANG GangHE Wuyuheng
College of Forestry, Henan University of Science and Technology, Luoyang 471003,China
Keywords:
forest soil soil organic carbon density environmental factor correlation analysis Funiu Mountain Henan Province
Classification number :
S714
DOI:
10.3969/j.issn.1000-2006.201709057
Document Code:
A
Abstract:
【Objective】 The aim of this study was to determine the spatial distribution of soil organic carbon(SOC)density in the Funiu Mountain area in Henan Province and create a regression model between SOC density and environmental factors. This will provide a theoretical reference for the rapid assessment of the spatial distribution of SOC density in forests. 【Method】Twenty-one plots were demarcated on Yuhuangding Mountain and Jijiaojian Mountain in the Funiu Mountain area based on factors such as elevation, vegetation and topography. Environmental factors such as climate, topography, vegetation and soil were investigated and the SOC densities in the plots were measured. Correlations between the SOC density and environmental factors were analyzed. 【Result】The average SOC density of forest soil was 11.52 kg/m2 in 0-40 cm depth and there were no significant difference in SOC density among plots depending on location(on different mountains)and vegetation types. Topographic factors(aspect and slope)explained the spatial distribution of the SOC for plots within the same mountain but not for plots on different mountains. The SOC density was closely related to aboveground vegetation properties, and the regression model can explain 73.3% of the variability in the SOC density in all 10 coniferous plots in both mountains, 76.7% of the variability in all 11 broad-leaved plots, and 71.8% of the variability in all 21 plots. 【Conclusion】Topographic factors were closely related to the SOC density for plots within the same mountain. Vegetation properties were consistently and closely related to the SOC under both vegetation types and on different mountains. Aboveground vegetation properties can be used to estimate the SOC stocks in complex mountainous forests across different spatial scales. This suggests that measuring vegetation properties by remote sensing could represent a feasible and rapid method for estimating SOC distribution in a rugged terrain.

References

[1] STOCKING M A. Tropical soils and food security: the next 50 years[J]. Science, 2003, 302(5649): 1356-1359. DOI:10.1126/science.1088579.
[2] LAL R. Soil carbon sequestration to mitigate climate change[J]. Geoderma, 2004, 123(1/2): 1-22. DOI:10.1016/j.geoderma.2004.01.032.
[3] 田耀武,贺春玲,田华禹,等. 森林土壤有机碳的空间累积机制与计量[M]. 北京:中国林业出版社, 2017: 5-15.
[4] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47: 151-163.DOI:10.1111/j.1365-2389.1996.tb01386.x.
[5] LüTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review[J]. European Journal of Soil Science, 2006, 57: 426-445. DOI:10.1111/j.1365-2389.2006.00809.x.
[6] WANG S, HUANG M, SHAO X, et al. Vertical distribution of soil organic carbon in China[J]. Environmental Management, 2004, 33: S200-S209.DOI:10.1007/s00267-003-9130-5.
[7] LI P, WANG Q, ENDO T, et al. Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests[J]. Geoderma, 2010, 154(3): 407-415. DOI:10.1016/j.geoderma.2009.11.023.
[8] SCHULP C J E, NABUURS G, VERBURG P H. Future carbon sequestration in Europe-effects of land use change[J]. Agriculture, Ecosystems and Environment, 2008, 127(3): 251-264. DOI:10.1016/j.agee.2008.04.010.
[9] TAN Z, LAL R, SMECK N E, et al. Taxonomic and geographic distribution of soil organic carbon pools in Ohio[J]. Soil Science Society of America Journal, 2004, 68(6): 1896-1904.DOI:10.2136/sssaj2004.1896.
[10] ESHETU Z, GIESLER R, GBERG H P. Historical land use pattern affects the chemistry of forest soils in the Ethiopian highlands[J]. Geoderma, 2004, 118(3): 149-165. DOI:10.1016/s0016-7061(03)00190-3.
[11] LEMENIH M, ITANNA F. Soil carbon stock and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia[J]. Geoderma, 2004, 123(1): 177-188. DOI:10.1016/j.geoderma.2004.02.004.
[12] 田耀武, 曾立雄, 黄志霖, 等. 森林土壤有机碳深度分布模型的构建与应用[J]. 生态学报, 2015, 35(22): 7503-7510. DOI:10.5846/stxb201403250556.
TIAN Y W, ZENG L X, HUANG Z L, et al.Construction and application of a depth distribution model for soil organic carbon in forest areas[J]. Acta Ecologica Sinica, 2015, 35(22):7503-7510.
[13] 唐朋辉, 党坤良, 王连贺, 等. 秦岭南坡红桦林土壤有机碳密度影响因素[J]. 生态学报, 2016, 36(4): 1030-1039. DOI: 10.5846/stxb201406271326.
TANG P H, DANG K L, WANG L H, et al. Factors affecting soil organic carbon density in Betula albosinensis forests on the southern slope of the Qinling Mountain[J]. Acta Ecologica Sinica, 2016, 36(4): 1030-1039.
[14] LAL R. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 2005, 220: 242-258. DOI:10.1016/j.foreco.2005.08.015.
[15] PELTONIEMI M, THURIG E, OGLE S, et al. Models in country scale carbon accounting of forest soils[J]. Silva Fennica, 2007, 41: 575-602. DOI: 10.14214/sf.290.
[16] VENTERIS E R, MCCARTY G W, RITCHIES J C, et al. Influence of management history and landscape variables on soil organic carbon and soil redistribution[J]. Soil Science, 2004, 169(1): 787-795. DOI:10.1097/01.ss.0000148742.75369.55.
[17] FAHEY T J, SICCAMA T G, DRISCOLL C T, et al. The biogeochemistry of carbon at Hubbard Brook[J]. Biogeochemistry, 2005, 75(1): 109-176. DOI:10.1007/s10533-004-6321-y.
[18] 叶永忠, 杨清培, 翁梅, 等. 伏牛山森林群落物种多样性研究[J]. 河南科学, 1999(S1): 61-64. DOI: 10.5846/stxb201205120699.
YE Y Z, YANG Q P, WENG M, et al. Study on forest community diversity in Funiushan Mountain[J]. Henan Sciences, 1999(S1): 61-64.
[19] 毕会涛, 凡琳洁, 杨红震, 等. 伏牛山北坡栓皮栎天然次生林不同生长阶段土壤碳储量研究[J]. 河南科学, 2016, 34(8): 1289-1294.
BI H T, FAN L J, YANG H Z, et al. The soil carbon storage of natural secondary forest in the northern of Funiu Mountain of Quercus variabilis in different growth stages[J]. Henan Sciences, 2016, 34(8): 1289-1294.
[20] BRéDA N J J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies[J]. Journal of Experimental Botany, 2003, 54(392): 2403-2417. DOI:10.1093/jxb/erg263.
[21] CHEN J M, BLACK T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell and Environment, 1992, 15(4): 421-429. DOI:10.1111/j.1365-3040.1992.tb00992.x.
[22] CHEN J M, RICH P M, GOWER S T, et al. Leaf area index of boreal forests: theory, techniques and measurements[J]. Journal of Geophysical Research, 1997, 102(D24): 29429-29443.DOI:10.1029/97jd01107.
[23] CHEN J M. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands[J]. Agricultural and Forest Meteorology, 1996, 80(2): 135-163. DOI:10.1016/0168-1923(95)02291-0.
[24] SKOVSGAARD J P, VANCLAY J K. Forest site productivity: a review of spatial and temporal variability in natural site conditions[J]. Forestry, 2013, 86(3): 305-315. DOI:10.1093/forestry/cpt010.
[25] AVERY T E, BURKHART H E. Forest measurements[M]. 5th ed. New York: McGraw-Hill, 2002.
[26] 郑聪慧, 贾黎明, 段劼, 等. 华北地区栓皮栎天然次生林地位指数表的编制[J]. 林业科学, 2013, 49(2): 79-85. DOI: 10.11707/j.1001-7488.20130212.
ZHENG C H, JIA L M, DUAN K, et al. Establishment of site index table for Quercus variabilis natural secondary forest in North China[J]. Scientia Silvae Sinicae, 2013, 49(2): 79-85.
[27] CONN A R, GOULD N I M, TOINT P L, et al. A primal-dual trust-region algorithm for non-convex nonlinear programming[J]. Mathematical Programming, 2000, 87(2):215-249. DOI:10.1007/s101070050112.
[28] ZHAO X, WANG Q, KAKUBARI Y. Stand-scale spatial patterns of soil microbial biomass in natural cold-temperate beech forests along an elevation gradient[J]. Soil Biology and Biochemistry, 2009, 41(7): 1466-1474. DOI:10.1016/j.soilbio.2009.03.028.
[29] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2007,268-270,389-391.
BAO S D. Soil agro-chemistrical analysis[M]. 3rd ed.Beijing: China Agriculture Press, 2007:268-270,389-391
[30] NASH J E, SUTTCLIFFE J V. River flow forecasting through conceptual models, part I: a discussion of principles[J]. Journal of Hydrology, 1970, 10(3): 282-290. DOI:10.1016/0022-1694(70)90255-6.
[31] CHENG H, OUYANG C, HAO F X, et al. The non-point source pollution in livestock-breeding areas of the Heihe River basin in Yellow River[J]. Stochastic Environmental Research and Risk Assessment, 2007, 21(3): 213-221. DOI:10.1007/s00477-006-0057-2.
[32] CHIEW F H S, STEWARDSON M J, MCMAHON T A. Comparison of six rainfall-runoff approaches[J]. Journal of Hydrology, 1993, 147(1): 1-36. DOI:10.1016/0022-1694(93)90073-i.
[33] SOMBROEK W G, NACHTERGAELE F O, HEBEL A, et al. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J]. Ambio, 1993, 22(7): 417-426. DOI: 10.1080/02786827308959659.
[34] 刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437-5448.
LIU S R, WANG H, LUAN J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437-5448.
[35] YIMER F, LEDIN S, ABDELKADIR A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia[J]. Geoderma, 2006, 135(1): 335-344. DOI:10.1016/j.geoderma.2006.01.005.
[36] MCCUNE B, KEON D. Equations for potential annual direct incident radiation and heat load[J]. Journal of Vegetation Science, 2002, 13(4): 603-606. DOI:10.1111/j.1654-1103.2002.tb02087.x.
[37] THOMPSON J A, KOLKA R K. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. [J]. Soil Science Society of America Journal, 2005, 69(4): 1086-1093. DOI:10.2136/sssaj2004.0322.
[38] GIFFORD R M, RODERICK M L. Soil carbon stocks and bulk density, spatial or cumulative mass coordinates as a basis of expression[J]. Global Change Biology, 2003, 9(11): 1507-1514. DOI:10.1046/j.1365-2486.2003.00677.x.
[39] PRIBYL D W. A critical review of the conventional SOC to SOM conversion factor[J]. Geoderma, 2010,156(3/4): 75-83. DOI:10.1016/j.geoderma.2010.02.003.

Last Update: 2019-01-28