我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同木质底物诱导下桦剥管菌细胞内差异蛋白质分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年01期
Page:
181-185
Column:
研究简报
publishdate:
2019-01-28

Article Info:/Info

Title:
Intracellular proteome analysis of Piptoporus betulinus induced by different wood substrates
Article ID:
1000-2006(2019)01-0181-05
Author(s):
YAN ShaopengZI XiaoxueWANG Qiuyu
College of Life Science, Northeast Forestry University,Harbin 150040,China
Keywords:
substrate induction Piptoporus betulinus intracellular protein differential expression
Classification number :
S718.8
DOI:
10.3969/j.issn.1000-2006.201702019
Document Code:
A
Abstract:
【Objective】In this paper, we investigated the differential expression of intracellular proteins induced by different woody substrates, and explored the degradation mechanism of wood by Piptoporus betulinus.【Method】Wood sawdust of birch and spruce were used as inducing substrates, the protein two-dimensional electrophoresis technique(2-DE)and mass spectrometry(MALDI-TOF / TOF MS)was used to detect the changes in Piptoporus betulinus intracellular protein induced by wood sawdust compared with the control group(without sawdust), and analyze the differences in bioinformatics.【Result】The Piptoporus betulinus intracellular protein expression changed significantly induced by birch and spruce sawdust. A total of 32 intracellular differential expression protein sites were detected in the treatment group(adding sawdust), 17 differential protein sites were successfully identified by mass spectrometry and database retrieval. These proteins had transferase, hydrolase, protein binding, and cell signal transduction molecular functions, and were involved in the stimulation of organic compounds, metabolism and metabolic processes.【Conclusions】The degradation of wood by Piptoporus betulinus is the result of the interaction of various proteins, regulating the expression of related proteins in various metabolic processes.

References

[1] 吕世翔. 三种木腐菌木材降解相关酶以及相关基因 TRAP 标记的变异[D]. 哈尔滨:东北林业大学, 2010.
LV S X. Wood degradation enzymes of three wood-rotting fungus and relevant gene variation of the fungus by TRAP marker [D]. Harbin:Northeast Forestry University,2010.
[2] 刘欣, 赵敏, 王秋玉. 5 种木材腐朽菌的生物学特性及对白桦木材腐朽能力的分析[J]. 东北林业大学学报, 2008, 36(3): 41-44. DOI: 10.13759/j.cnki.dlxb.2008.03.019.
LIU X, ZHAO M, WANG Q Y. Biological characters of five species of wood rot fungi and decay capacity to Betula platyphylla[J]. Journal of Northeast Forestry University, 2008, 36(3):41-44.
[3] 王丽华, 田雪梅, 毕旺华, 等. 桦剥管孔菌液体发酵环境条件的研究[J]. 食用菌学报, 2011, 18(4): 37-39. DOI:10.16488/j.cnki.1005-9873.2011.04.006
WANG L H, TIAN X M, BI W H,et al. Optimization of parameters affecting extracellular polysaccharide production in submerged cultures of Piptoporus betulinus[J]. Acta Edulis Fungi, 2011, 18(4): 37-39.
[4] CYRANKA M, GRAZ M, KACZOR J, et al. Investigation of antiproliferative effect of ether and ethanol extracts of Birch polypore medicinal mushroom, Piptoporus betulinus(Bull.: Fr.)P. karst.(Higher Basidiomycetes)in vitro grown mycelium[J]. International Journal of Medicinal Mushrooms, 2011, 13(6): 525-533.
[5] 易晓雷, 苗雄鹰. 丝切蛋白-1 和内皮细胞分化因子受体-1 的研究进展[J]. 肿瘤药学, 2012, 2(4): 242-248.
YI X L, MIAO X Y. Recent progress in the research of CFL and EDG-1[J]. Anti-tumor Pharmacy, 2012, 2(4): 242-248.
[6] 田朝光,马延和. 真菌降解木质纤维素的功能基因组学研究进展[J]. 生物工程学报, 2010, 26(10): 1333-1339.
TIAN C G, MA Y H. Progress in lignocellulose deconstruction by fungi[J]. Chin J Biotech, 2010, 26(10): 1333-1339.
[7] HUANG K J, LIN S H, LIN M R, et al. Xanthone derivatives could be potential antibiotics: virtual screening for the inhibitors of enzyme I of bacterial phosphoenolpyruvate-dependent phosphotransferase system[J]. The Journal of Antibiotics, 2013, 66(8): 453-458.
[8] SANTINI D, VINCENZI B, MASSACESI C, et al. S-adenosylmethionine(AdoMet)supplementation for treatment of chemotherapy-induced liver injury[J]. Anticancer research, 2002, 23(6D): 5173-5179.
[9] GAJADEERA C S, ZHANG X, WEI Y, et al. Structure of inorganic pyrophosphatase from Staphylococcus aureus reveals conformational flexibility of the active site[J]. Journal of structural biology, 2015.
[10] 王真, 欧齐星, 王双山, 等. 流产布鲁氏菌 ATP/GTP 结合蛋白基因缺失株保护力及安全性研究[J]. 中国农业大学学报, 2013, 18(3): 138-143.
WANG Z, OU Q X,Wang S S,et al. Studies on protective efficacy and safety of Brucella abortus ATP/GTP binding protein gene deleted mutant[J]. Journal of China Agricultural University, 2013, 18(3):138-143.
[11] WOLFRAM F, KITOVA E N, ROBINSON H, et al. Catalytic mechanism and mode of action of the periplasmic alginate epimerase AlgG[J]. Journal of Biological Chemistry, 2014, 289(9): 6006-6019.
[12] STEEG P S, PALMIERI D, OUATAS T, et al. Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer[J]. Cancer Letters, 2003, 190(1): 1-12.
[13] MATSUSHIKA A, GOSHIMA T, FUJII T, et al. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae[J]. Enzyme and Microbial Technology, 2012, 51(1): 16-25.
[14] KRáKY M, VINOVá J, NOVOTNá E, et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase[J]. Tuberculosis, 2012, 92(5): 434-439.
[15] HUANG J, HU H, XIE Y, et al. Effects of TUBB3, TS and ERCC1 mRNA expressions on chemoresponse and clinical outcome of advanced gastric cancer by multiplex branched-DNA liquid chip technology[J]. Translational Gastrointestinal Cancer, 2013, 3(1): 21-28.
[16] WILLIAMS A J, WERNER-FRACZEK J, CHANG F, et al. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize[J]. Plant Physiology, 2003, 132(4): 2086-2097.
[17] SPAHN C M T, KIEFT J S, GRASSUCCI R A, et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit[J]. Science, 2001, 291(5510): 1959-1962.
[18] 汪新颖,王波,侯松涛,等.苹果酸脱氢酶的结构及功能[J].生物学杂志, 2009, 26(4): 69-72.
WANG X Y,WANG B,HOU S T,et al. Structure and function of malate dehydrogenases[J]. Journal of Biology, 2009, 26(4): 69-72.
[19] GRALLERT A, CONNOLLY Y, SMITH D L, et al. The S. pombe cytokinesis NDR kinase Sid2 activates Fin1 NIMA kinase to control mitotic commitment through Pom1/Wee1[J]. Nature Cell Biology, 2012, 14(7): 738-745.
[20] KURZAI O, SCHMITT C, CLAUS H, et al. Carbohydrate composition of meningococcal lipopolysaccharide modulates the interaction of Neisseria meningitidis with human dendritic cells[J]. Cellular Microbiology, 2005, 7(9): 1319-1334.
[21] SNODGRASS P J. Ornithine transcarbamylase: basic science and clinical considerations[M]. London: Springer Science & Business Media, 2003.

Last Update: 2019-01-28