我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

抗松材线虫病马尾松体胚发生与植株再生条件的优化(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年03期
Page:
1-8
Column:
研究论文
publishdate:
2019-05-15

Article Info:/Info

Title:
Somatic embryogenesis and plantlet regeneration of disease-resistant Pinus massoniana Lamb.
Article ID:
1000-2006(2019)03-0001-08
Author(s):
CHEN TingtingYE Jianren*WU XiaoqinSHEN LiyuanZHU Lihua
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
Keywords:
pine wilt disease disease-resistant Pinus massoniana Lamb. somatic embryogenesis regenerated plants suspension cultivation rooting
Classification number :
S791.24; S722.3
DOI:
10.3969/j.issn.1000-2006.201806005
Document Code:
A
Abstract:
【Objective】Pinus massoniana Lamb., a local tree species, was severely damaged with the epidemic spread of pine wilt disease. We explored and optimized somatic embryogenesis(SE)and plant regeneration conditions for disease-resistant P. massoniana Lamb. to enable rapid mass propagation.【Method】 Immature zygotic embryos of disease-resistant P. massoniana Lamb. were used to study the effect of hormone combinations on embryogenic callus induction by tissue culture method. We also used different culture methods to find the optimal method to propagate embryonic callus. Upon screening for various plant hormone concentration, we reported the optimal hormone combination for root development. Finally, we studied the differentiation of callus and plant regeneration.【Result】① The different plant hormones played a substantial role in inducing callus tissue. The optimal SE induction hormone medium was LP + 2 mg/L 2,4-D + 1 mg/L 6-BA and the highest induction rate of SE was up to 27.8%. We established 115 embryonic cell lines in 2015, and 6 months later 22 stable embryonic cell lines were obtained by proliferation. ② During multiplication of embryonal callus, suspension cultivation resulted in more embryonic calluses and a higher synchronization in a short period of time compared to those observed by solid proliferation cultivation method. The multiplication rate reached 3.88 after 7 days of suspension cultivation.③There was significant difference in the differentiation ability of the callus tissue cultured using different culture methods. The differentiation in suspention culture-solid was better than that in solid culture-solid. After culture, the cell had better differentiation ability and the induction of somatic embryos could reach 600 in each culture dish. In contrast, the cells could only differentiate a small number of somatic embryos and most of those somatic embryos were malformed. Somatic embryo germination was accomplished after 30 days using high quality somatic embryos and the highest germination rate achieved was 89.6%. ④In germination culture, many somatic embryos could not develop root successfully. Our study demonstrated that NAA and IBA were beneficial for root formation, and 1.0 mg/L IBA + 0.2 mg/L NAA was the optimal hormone combination for root formation. Strengthening the shoots before transplantation can improve the survival rate. Brassinolide could promote the growth of somatic embryos at an optimal concentration of 0.01 mg/L. Somatic embryos that were cultivated with brassinolide showed a healthy dark green color and well developed roots with more branch roots compared to those cultivated without brassinolide. ⑤The regenerated plants were transplanted into a matrix with the farmland to soil volume ratio of 2:1. During the process of transplantation, the survival rates of regenerated plants of different size were significantly different. The survival rate of regenerated plants was low, when small transplants were used. Conversely, the survival rate of regenerated plants was high when large transplants were used. However, the regenerated plants had a low degree of lignification and they were more prone to lodging. When the regenerated plants grew up to about 5 cm, it could be transplanted and the highest survival rate achieved was 90.3%. 【Conclusion】This study successfully established a plant regeneration system via somatic embryogenesis of P. massoniana Lamb.. The optimal SE induction hormone medium was LP + 2.0 mg/L 2,4-D + 1.0 mg/L 6-BA. Cell suspension culture for differentiation of somatic embryos was better than solid culture. WPM + 1.0 mg/L IBA + 0.2 mg/L NAA was the best combination for root formation. Regenerated plant length of 5 cm were suitable for transplanting.

References

[1] 陈碧华, 梁一池, KRYSTYNA K, 等. 马尾松成熟胚愈伤组织的增长研究[J]. 林业科技开发, 2010, 24(6): 114-116. DOI:10.3969/j.issn.1000-8101.2010.06.032.
CHEN B H, LIANG Y C, KRYSTYNA K, et al. Study on the callus growth started from mature embryo of Pinus massoniana[J]. China Forestry Science and Technology, 2010, 24(6): 114-116.
[2] 吴小芹, 张艺, 谢小桃, 等. 外生菌根菌对抗性黑松和赤松不同家系生长影响[J]. 林业科技开发, 2009, 23(1): 19-22. DOI:10.3969/j.issn.1000-8101.2009.01.005.
WU X Q, ZHANG Y, XIE X T, et al. Effect of ectomycorrhizal fungi(EMF)on growth of the Pinus densiflora and P. thunbergii family trees resistant Bursaphelenchus xylophilus[J]. China Forestry Science and Technology, 2009, 23(1): 19-22.
[3] 徐六一, 章健, 高景斌, 等. 安徽省松材线虫病抗性育种研究进展[J]. 安徽林业科技, 2013, 39(2): 8-10,14. DOI:10.3969/j.issn.2095-0152.2013.02.002.
XU L Y, ZHANG J, GAO J B, et al. Research progress on resistance breeding to pinewood nematodiasis in Anhui Province[J]. Anhui Forestry Science and Technology, 2013, 39(2): 8-10,14.
[4] 张锴, 梁军, 严冬辉, 等. 中国松材线虫病研究[J]. 世界林业研究, 2010, 23(3): 59-63. DOI:10.13348/j.cnki.sjlyyj.2010.03.008.
ZHANG K, LIANG J, YAN D H, et al. Research advances of pine wood nematode disease in China[J]. World Forestry Research, 2010, 23(3): 59-63.
[5] 韩兵, 朴春根, 汪来发, 等. 中国松材线虫病的发生现状及治理对策[J]. 中国农学通报, 2007, 23(2): 146-150. DOI:10.3969/j.issn.1000-6850.2007.02.036.
HAN B, PIAO C G, WANG L F, et al. Development status of pinewood nematode disease and its management strategies in China[J]. Chinese Agricultural Science Bulletin, 2007, 23(2): 146-150.
[6] OH M J, NA H R, CHOI H K, et al. High frequency plant regeneration system for Nymphoides coreana via somatic embryogenesis from zygotic embryo-derived embryogenic cell suspension cultures[J]. Plant Biotechnology Reports, 2010, 4(2): 125-128. DOI:10.1007/s11816-010-0126-3.
[7] GUPTA P K, PULLMAN G, TIMMIS R, et al. Forestry in the 21st century: the biotechnology of somatic embryogenesis[J]. Journal of Endocrinology, 1980, 123(3):441-444.
[8] 季孔庶, 王潘潘, 王金铃, 等. 松科树种的离体培养研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(1): 142-148. DOI:10.3969/j.issn.1000-2006.2015.01.026.
JI K S, WANG P P, WANG J L, et al. Review on in vitro culture of tree species in Pinaceae[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(1): 142-148.
[9] 高芳, 沈海龙, 刘春苹, 等. 红松成熟胚愈伤组织诱导外植体选择及培养条件优化[J]. 南京林业大学学报(自然科学版), 2017, 41(3): 43-50. DOI:10.3969/j.issn.1000-2006.201605034.
GAO F, SHEN H L, LIU C P, et al. Optimization of culture conditions and selection of suitable explants for callus induction from mature embryo of Pinus koraiensis[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(3): 43-50.
[10] NUNES S, MARUM L, FARINHA N, et al. Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2018, 132(1): 71-84. DOI:10.1007/s11240-017-1311-7.
[11] PULLMAN G S, OLSON K, FISCHER T, et al. Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation[J]. New Forests, 2016, 47(3): 453-480. DOI:10.1007/s11056-016-9525-9.
[12] 黄健秋, 卫志明, 许智宏. 马尾松成熟合子胚的体细胞胚胎发生和植株再生[J]. 植物学报, 1995, 37(4): 289-294,338.
HUANG J Q, WEI Z M, XU Z H. Somatic embryogenesis and plantlet regeneration from callus of mature zygotic embryos of masson pine[J]. Journal of Integrative Plant Biology, 1995, 37(4): 289-294,338.
[13] 施季森, 高燕, 席梦利, 等.诱导马尾松未成熟种子胚性胚柄细胞团再生植株的方法:CN101849505A[P]. 2010-10-06.
SHI J S, GAO Y, XI M L, et al. Methods for inducing regeneration of plantlets from immature embryo embryos of Pinus massoniana: CN101849505A[P].2010-10-06.
[14] 杨模华, 张冬林, 杨艳, 等. 马尾松幼胚离体培养器官发生植株再生研究[J]. 中南林业科技大学学报, 2011, 31(3): 90-96. DOI:10.3969/j.issn.1673-923X.2011.03.019.
YANG M H, ZHANG D L, YANG Y, et al. Micropropagation in immature embryos of Pinus massoniana in vitro[J]. Journal of Central South University of Forestry & Technology, 2011, 31(3): 90-96.
[15] 张婷玉.抗松材线虫病马尾松幼胚体细胞胚胎发生研究[D]. 南京:南京林业大学, 2015.
ZHANG T Y. Studies on somatic embryogenesis from immature zygotic embryos of disease-resistant Pinus massoniana Lamb.[D]. Nanjing: Nanjing Forestry University, 2015.
[16] 李清清, 叶建仁, 朱丽华, 等. 黑松未成熟胚的体细胞胚胎发生和植株再生[J]. 林业科学, 2012, 48(12): 39-44.DOI:10.11707/j.1001-7488.20121206.
LI Q Q, YE J R, ZHU L H, et al. Somatic embryogenesis and plantlet regeneration from immature zygotic embryos of Pinus thunbergii[J]. Scientia Silvae Sinicae, 2012, 48(12): 39-44.
[17] 史昆, 杨模华, 李志辉, 等. 马尾松胚性细胞悬浮增殖培养体系的建立[J]. 中南林业科技大学学报, 2014, 34(1): 64-68. DOI:10.14067/j.cnki.1673-923x.2014.01.019.
SHI K, YANG M H, LI Z H, et al. Establishment of embryoge-nic suspension cultures in somatic embryogenesis of Pinus massoniana Lamb.[J]. Journal of Central South University of Forestry & Technology, 2014, 34(1): 64-68.
[18] 袁澍, 贾勇炯, 林宏辉. 诱导植物体细胞胚发生的几个生理因素[J]. 植物生理学通讯, 2003, 39(5): 508-512. DOI:10.13592/j.cnki.ppj.2003.05.041.
YUAN S, JIA Y J, LIN H H. Several physiological factors inducing somatic embryogenesis of plant[J]. Plant Physiology Communications, 2003, 39(5): 508-512.
[19] 翟晓巧, 程斐, 朱延林. 二乔刺槐愈伤组织超低温保存及适宜降温方法[J]. 林业科学, 2009, 45(10): 49-54. DOI:10.3321/j.issn:1001-7488.2009.10.009.
ZHAI X Q, CHENG F, ZHU Y L. Methods of lowering temperature for cryopreservation of calli of Robinia bella-rosea[J]. Scientia Silvae Sinicae, 2009, 45(10): 49-54.
[20] GUPTA P K, TIMMIS R. Mass propagation of conifer trees in liquid cultures progress towards commercialization[J]. Plant Cell, Tissue and Organ Culture, 2005, 81(3): 339-346. DOI:10.1007/s11240-004-6654-1.
[21] 张建伟, 王军辉, 马建伟. 粗枝云杉胚性愈伤组织增殖后期的体细胞胚发生方式转变[J]. 植物生理学报, 2014, 50(2): 197-202. DOI:10.13592/j.cnki.ppj.2014.02.016.
ZHANG J W, WANG J H, MA J W. The way change of somatic embryogenesis at the late stage of embryogenic callus proliferation of Picea asperata Mast[J]. Plant Physiology Journal, 2014, 50(2): 197-202.
[22] 郭奕明, 杨映根, 郭毅, 等. 落叶松体细胞的胚胎发生[J]. 植物生理学通讯, 2003, 39(5): 531-535. DOI:10.13592/j.cnki.ppj.2003.05.045.
GUO Y M, YANG Y G, GUO Y, et al. Somatic embryogenesis of larch[J]. Plant Physiology Communications, 2003, 39(5): 531-535.
[23] 齐力旺, 韩一凡, 韩素英, 等. 麦芽糖、NAA及ABA对华北落叶松体细胞胚成熟及生根的影响[J]. 林业科学, 2004, 40(1): 52-57. DOI:10.3321/j.issn:1001-7488.2004.01.009.
QI L W, HAN Y F, HAN S Y, et al. Effects of maltose, NAA and ABA on somatic maturation and radicle rooting of Larix principis-rupprechtii[J]. Scientia Silvae Sinicae, 2004, 40(1): 52-57.
[24] 张彩云, 朱丽华, 谈家金, 等. 抗松针褐斑病湿地松体细胞胚胎发生与植株再生[J]. 东北林业大学学报, 2016, 44(6): 17-22. DOI:10.3969/j.issn.1000-5382.2016.06.006.
ZHANG C Y, ZHU L H, TAN J J, et al. Somatic embryogenesis and plantlet regeneration of disease-resistant slash pine(Pinus elliottii Engelm.)to brown spot needle blight[J]. Journal of Northeast Forestry University, 2016, 44(6): 17-22.
[25] 陆燕元. 美国花旗松组织培养及再生系统建立的研究[D]. 杨凌: 西北农林科技大学, 2005.
LU Y Y. Study on the technique of tissue culture and regeneration of douglas-fir[D]. Yangling: Northwest A & F University, 2005.
[26] DESLAURIERS S D,LARSEN P B. FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in Arabidopsis hypocotyls[J]. Molecular Plant,2010,3:626-640. DOI: 10.1093/mp/ssq015.
[27] 刘冬云, 史宝胜, 李银华, 等. 不同碳源及PP333、GA3对山丹组培苗鳞茎增大的影响[J]. 河北农业大学学报, 2005, 28(2): 32-35. DOI:10.3969/j.issn.1000-1573.2005.02.008.
LIU D Y, SHI B S, LI Y H, et al. The bulbs augmentation influenced by the carbon resources PP333 and GA3 during the low lily tissue culture[J]. Journal of Agricultural University of Hebei, 2005, 28(2): 32-35.
[28] 赵雪松, 王倩, 闫青地, 等. 油菜素内酯对水稻根系发育的调控作用[J]. 中国细胞生物学学报, 2016, 38(10): 1191-1198.
ZHAO X S, WANG Q, YAN Q D, et al. Function of brassinolide in the regulation of root development in rice[J]. Chinese Journal of Cell Biology, 2016, 38(10): 1191-1198.

Last Update: 2019-05-15