我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

蓝莓根系对土壤锰胁迫的生理响应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年03期
Page:
169-174
Column:
专题报道
publishdate:
2019-05-15

Article Info:/Info

Title:
Physiological response of blueberry roots to Mn2+ stress in soil
Article ID:
1000-2006(2019)03-0169-06
Author(s):
DONG Shanshan1 LI Ningran3 YANG Haiyan1* WU Wenlong1 Lü Lianfei1 LI Weilin12*
1.Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; 2. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; 3. Ninghai Middle School, Nanjing 210036, China
Keywords:
blueberry Mn stress physiological response
Classification number :
S663.2
DOI:
10.3969/j.issn.1000-2006.201805010
Document Code:
A
Abstract:
【Objective】 This test was carried out to understand the tolerance of blueberry to Mn stress in soil in order to provide basic references for blueberry cultivation.【Method】 Potted blueberry cultivars ‘Gardenblue’ and ‘Tifblue’ were irrigated with 0, 1.0, 2.5, 5.0, 10.0 mmol/L Mn2+, and six physiological indicators including the generation rate of O<sup>-·2, content of hydrogen peroxide(H2O2), malondialdehyde(MDA), soluble protein(SP), ascorbic acid(AsA)and glutathione(GSH)in root were determined, the physiological response and tolerance to Mn2+ stress were evaluated.【Result】Less than 2.5 mmol/L Mn2+ added in soil was innocuous for the growth of blueberry, over 2.5 mmol/L Mn2+ added in soil had negative effect on the growth of blueberry. With the increase of Mn2+ concentration, significant changes of O<sup>-·2 generation rate, H2O2 and MDA content, as well as SP, AsA and GSH content in roots appeared at 2.5 mmol/L and more concentrations, of which, these changes of ‘Gardenblue’ were slighter than ‘Tifblue’. It is inferred blueberry has strong tolerance to Mn stress in soil, and the tolerance is based on the alterations of antioxidants such as SP, AsA and GSH. 【Conclusion】Blueberry has a regulating mechanism for Mn stress, which lead to the strong tolerance to Mn with a threshold value of 2.5 mmol/L Mn2+ concentration in soil.

References

[1] 夏龙飞, 宁松瑞, 蔡苗.酸性土壤植物锰毒与修复措施研究进展[J]. 绿色科技, 2017(12): 26-29. DOI: 10.16663/j.cnki.lskj.2017.12.010.
XIA L F, NING S R, CAI M. Research progress on manganese toxicity and remediation measures of acidic soil plants[J]. Journal of Green Science and Technology, 2017(12): 26-29.
[2] 臧小平. 土壤锰毒与植物锰的毒害[J]. 土壤通报, 1999, 30(3):139-141. DOI:10.3321/j.issn:0564-3945.1999.03.016.
ZANG X P. Soil manganese toxicity and toxicity of plant manganese[J]. Chinese Journal of Soil Science, 1999,30(3): 139-141.
[3] 陈绍荣, 余根德, 白云飞. 现状: 我国土壤在不断酸化——土壤酸化及酸性土壤调理剂(一)[J]. 中国农资, 2012(48): 22.
CHEN S R, YU G D, BAI Y F. Status quo: China’s soil is continuously acidified: soil acidification and acidic soil conditioner(1)[J]. China Agri-Production News, 2012(48): 22.
[4] 张玉秀, 李林峰, 柴团耀, 等. 锰对植物毒害及植物耐锰机理研究进展[J]. 植物学报, 2010, 45(4): 506-520. DOI:10.3969/j.issn.1674-3466.2010.04.014.
ZHANG Y X, LI L F, CHAI T Y, et al. Mechanisms of manganese toxicity and manganese tolerance in plants[J]. Bulletin of Botany, 2010, 45(4): 506-520.
[5] 陈桂芬. 广西植物的锰毒与矫正对策[J]. 广西农业科学, 2001,32(4): 187-188. DOI:10.3969/j.issn.2095-1191.2001.04.008.
CHEN G F. Manganic poison on the plants of Guangxi and its remedy countermeasure[J]. Guangxi Agricultural Sciences, 2001, 32(4): 187-188.
[6] 纪永强, 于忠范, 王福宾. 锰对苹果树的毒害与防治[J]. 北方果树, 2002(4): 31-36. DOI:10.3969/j.issn.1001-5698.2002.04.019.
JI Y Q, YU Z F,WANG F B. The poison of manganese to apple trees and its control[J]. Northern Fruits, 2002(4): 31-36.
[7] 尹文彦, 姚银安. 葡萄根系对锰胁迫的生理反应[J]. 山地农业生物学报, 2011, 30(3): 194-197. DOI:10.15958/j.cnki.sdnyswxb.2011.03.017.
YIN W Y, YAO Y A. Physiological responses of grape roots to Mn stress[J]. Journal of Mountain Agriculture and Biology, 2011, 30(3): 194-197.
[8] 赵金海, 王雷, 黄国庆, 等. 蓝莓的营养成分测定及保健功能研究[J]. 黑龙江科学, 2018, 9(9): 26-27.
ZHAO J H, WANG L, HUANG G Q, et al. Research on the determination of nutritional components and health function of blueberry[J]. Heilongjiang Science, 2018, 9(9): 26-27.
[9] 孙海悦, 李亚东. 世界蓝莓育种概述[J]. 东北农业大学学报, 2014, 45(9): 116-122. DOI:10.3969/j.issn.1005-9369.2014.09.019.
SUN H Y, LI Y D. Overview of blueberry breeding in the world[J]. Journal of Northeast Agricultural University, 2014, 45(9): 116-122.
[10] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990(6): 55-57.
WANG A G, LUO G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J]. Plant Physiology Communications, 1990(6): 55-57.
[11] 罗群.考马斯亮蓝法快速测定菜籽粕中可溶性蛋白质的含量[J].成都大学学报(自然科学版), 2014, 33(2):125-126, 129. DOI:10.3969/j.issn.1004-5422.2014.02.007.
LUO Q. Rapid determination of soluble protein content in rapeseed meal by coomassie brilliant blue method[J]. Journal of Chengdu University(Natural Science Edition)2014, 33(2):125-126, 129.
[12] HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198. DOI:10.1016/0003-9861(68)90654-1.
[13] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002: 122-127.
CHEN J X, WANG X F. Plant physiology experimental guidance[M]. Guangzhou: South China University of Technology Press, 2002: 122-127.
[14] ANDERSON M E. Determination of glutathione and glutathione disulfide in biological samples[J]. Methods in Enzymology, 1985, 113: 548-555. DOI:10.1016/S0076-6879(85)13073-9.
[15] 徐小颖, 施国新, 徐勤松, 等. Mn2 +对菹草活性氧代谢及其亚显微结构的影响[J]. 南京师大学报(自然科学版), 2009, 32(1): 105-109.DOI: 10.3969/j.issn.1001-4616.2009.01.023.
XU X Y, SHI G X, XU Q S, et al. Effect of manganese on reactive oxygen species metabolism and submicroscopic structure of Potamogeton crispus[J]. Journal of Nanjing Normal University(Natural Science Edition), 2009, 32(1): 105-109.
[16] 程淑娟, 唐东芹, 刘群录. 盐胁迫对两种忍冬属植物活性氧平衡的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(1): 137-141.
CHENG S J, TANG D Q, LIU Q L. Reactive oxygen species homeostasis of two Lonicera species under salt stress[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(1): 137-141.
[17] MONTEIRO M S, SANTOS C, SOARES A M V M, et al. Assessment of biomarkers of cadmium stress in lettuce[J]. Ecotoxicology and Environmental Safety, 2009, 72(3): 811-818.
[18] 王广林, 张金池, 王丽, 等. 铜、锌胁迫对丁香蓼生理指标的影响[J].南京林业大学学报(自然科学版), 2009, 33(4): 43-47. DOI:10.3969/j.jssn.1000-2006.2009.04.009.
WANG G L, ZHANG J C, WANG L, et al. Effects of Cu and Zn stress on physiological indications of Ludwigia prostrate Roxb[J]. Journal of Nanjing Forestry University(Natural Sciences Eition), 2009, 33(4): 43-47.
[19] XU X Y, SHI G X, WANG J, et al. Copper-induced oxidative stress in Alternanthera philoxeroides callus[J]. Plant Cell, Tissue and Organ Culture(PCTOC), 2011, 106(2): 243-251. DOI:10.1007/s11240-010-9914-2.
[20] LONG J, HUANG W, CHEN D, et al. Physio-ecological response of water spinach(Ipomoea aquatica Forsk)and Gymura cusimbua to uranium stress[J]. International Journal of Ecology, 2017, 6(2): 61-68. DOI:10.12677/ije.2017.62007.
[21] DUPONT F M, HURKMAN W J, VENSEL W H, et al. Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development[J]. Journal of Cereal Science, 2006, 44(1): 101-112. DOI:10.1016/j.jcs.2006.04.003.
[22] COBBETT C, GOLDSBROUGH P. Phytochelatins andmetallothioneins: roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology, 2002, 53(1): 159-182. DOI:10.1146/annurev.arplant.53.100301.135154.
[23] EFREMOVA S M, MARGULIS B A, GUZHOVA I V, et al. Heat shock protein Hsp70 expression and DNA damage in Baikalian sponges exposed to model pollutants and wastewater from Baikalsk pulp and paper plant[J]. Aquatic Toxicology, 2002, 57(4): 267-280. DOI:10.1016/s0166-445x(01)00209-0.
[24] JOHN R, AHMAD P, GADGIL K, et al. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L.[J]. Plant, Soil and Environment, 2008, 54(6): 262-270. DOI:10.17221/2787-pse.
[25] 李春雷. 氟对茶树抗坏血酸-谷胱甘肽循环系统的影响[J]. 江苏农业学报, 2016, 32(5):1018-1022. DOI: 10.3969/j.issn.1000-4440.2016.05.010.
LI C L. ASA-GSH cycle in tea plant exposed to fluoride application[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(5): 1018-1022.

Last Update: 2019-05-15