我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

施用沼液对农林土壤生态系统影响的研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年03期
Page:
175-182
Column:
综合述评
publishdate:
2019-05-15

Article Info:/Info

Title:
A review on the effects of biogas slurry on agroforestry soil ecosystems
Article ID:
1000-2006(2019)03-0175-08
Author(s):
XUE BinXU Hanmei RUAN Honghua*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
agroforestry soil biogas slurry soil animal soil microorganism heavy metal pollution soil adsorption capacity
Classification number :
S714
DOI:
10.3969/j.issn.1000-2006.201805003
Document Code:
A
Abstract:
Emissions of biogas slurry have been increasing year by year, resulting in deleterious effects on soil properties in agroforestry ecosystems. Biogas slurry is not only rich in nutrients such as nitrogen, phosphorus, potassium, organic matter, humic acids and growth hormones, but also in heavy metals and antibiotic content. Biogas slurry can be reasonably used as a sustainable resource; however, it has the potential to cause soil and environmental contamination. The objective of this study was to provide scientific reference for the rational utilization of biogas slurry to improve soil and maintain soil productivity. We reviewed recent research on the effects of diogns slnmy on soil to understand the effects of biogas slurry application on soil properties in agroforestry ecosystems as followed: ① Appropriate application of biogas slurry increases the abundance of soil fauna, microorganisms, total N, total K, total P, available N, available P and available K. ② The effects of biogas slurry application on soil properties are influenced by the nature and structure of the soils, and by the dosages and application times of the slurry. ③ Biogas slurry application could increase the soil content of heavy metals, with the degree of increase varying at different soil layers. ④ Different biogas slurry raw materials and variation in fermentation times might lead to variable effects of biogas slurry on agroforestry soils, as could variation in soil adsorption capacity, accumulation of heavy metals, soil nutrient elements, and soil fauna abundance, stages of growth, and growth rates, in addition to other factors. Compared with raw biogas slurry, diluted biogas slurry irrigated in soil is more likely to cause accumulation of Cd and Cu, and the inhibition effect on soil fauna is more pronounced in fresh versus aged slurry.The application of biogas slurry is an important approach for sustainable recycling of resources. Rational application of biogas slurry can not only increase soil productivity,but also can protecting the environment. However, processes and mechanisms of biogas slurry’s effects vary with biological, physical, and chemical properties of different types of agroforestry soil. Therefore, we suggest that long-term observations of the responses of agricultural and forest soil to biogas slurry application should be conducted, including investigations on the physical and chemical properties of biogas slurry, and specific site conditions. Hence, this would also involve deeply exploring the migration processes and adsorption of biogas slurry in the soil. Thus, biogas slurry has the potential to gain considerable significance in the long-term maintenance of soil productivity in different agroforestry lands in the future.

References

[1] 曹汝坤, 陈灏, 赵玉柱. 沼液资源化利用现状与新技术展望[J]. 中国沼气, 2015, 33(2):42-50. DOI:103969/ j.issn.1000-1166.2015.02.008.
CAO R K, CHEN H, ZHAO Y Z. Resource utilization of biogas slurry:current status and future prospects[J]. China Biogas, 2015, 33(2):42-50.
[2] ZHANG Y, CAI X, LANG X, et al. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: complexation versus mixture[J]. Environ Pollut, 2012, 166(11): 48-56. DOI:10.1016/j.envpol.2012.03.009.
[3] 王卫平, 陆新苗, 魏章焕, 等. 施用沼液对柑桔产量和品质以及土壤环境的影响[J]. 农业环境科学学报, 2011, 30(11): 2300-2305.
WANG W P, LU X M, WEI Z H, et al. Influence of applying biogas slurry on yield and quality of citrus and soil environment[J]. Journal of Agro-Environment Science, 2011, 30(11): 2300-2305.
[4] WENTZEL S, SCHMIDT R, PIEPHO H P, et al. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming[J]. Applied Soil Ecology, 2015, 96(4): 99-107. DOI:10.1016/j. apsoil.2015.06.015.
[5] BECCACCIA A, CALVET S, CERISUELO A, et al. Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing-finishing pigs. I. Influence of the inclusion of two levels of orange pulp and carob meal in isofibrous diets[J]. Animal Feed Science and Technology, 2015, 208(5): 158-169. DOI: 10.1016/j.anifeedsci.2015.07.008.
[6] KULIGOWSKI K, POULSEN TG, STOHOLM P, et al. Nutrients and heavy metals distribution in thermally treated pig manure[J]. Waste Manag Res, 2008, 26(4): 347-354. DOI:10.1177/0734242X08090075.
[7] WANG L, LUO X, ZHANG Y, et al. Community analysis of ammonia-oxidizingbetaproteobacteria at different seasons in microbial-earthworm ecofilters[J]. Ecological Engineering, 2013, 51:1-9. DOI:10.1016/j. ecoleng.20 12.12.062.
[8] 卫丹, 万梅, 刘锐,等. 嘉兴市规模化养猪场沼液水质调查研究[J]. 环境科学, 2014, 35(7):2650-2657. DOI:1013227/j. hjkx.2014.07.031.
WEI D, WAN M, LIU R, et al. Study on the quality of digested piggery wastewater in large-scale farms in Jiaxing[J]. Environmental Science, 2014, 35(7): 2650-2657.
[9] BONETTA S, BONETTA S, FERRETTI E, et al. Agriculturalreuse of the digestate from anaerobic co-digestion of organic waste: microbiological contamination, metal hazards and fertilizing performance[J]. Water Air Soil Pollut, 2014, 225(8): 1-11. DOI:10.1007/s11270-014-2046-2.
[10] ZHENG X, FAN J, CUI J, et al. Effects of biogas slurry application on peanut yield, soil nutrients, carbon storage, and microbial activity in anultisol soil in southern China[J]. Journal of Soils and Sediments, 2015, 16(2): 449-460. DOI:10.1007/s11368-015-1254-8.
[11] ELFSTRAND S, BÅTH B, MÅRTENSSON A. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek[J]. Applied Soil Ecology, 2007, 36(1): 70-82. DOI:10.1016/j.apsoil.2006.11.001.
[12] PANCHAL J, AERY N C. Effects of manganese waste on growth, nodulation, proline levels, and enzymatic activities in Vigna unguiculata(L.)Walp[J]. Toxicological & Environmental Chemistry, 2008, 90(6): 1063-1072. DOI:10.1080/02772240701862108.
[13] MORAL R, PEREZ-MURCIA M D, PEREZ-ESPINOSA A, et al. Salinity, organic content, micronutrients and heavy metals in pig slurries from south-eastern Spain[J]. Waste Manag, 2008, 28(2): 367-371. DOI:10.10 16/j.wasman.2007.01.009.
[14] 王辉, 董元华, 张绪美, 等. 集约化养殖畜禽粪便农用对土壤次生盐渍化的影响评估[J]. 环境科学, 2008, 29(1): 183-188. DOI: 10.13227/j.hjkx.2008.01.023.
WANG H, DONG Y H, ZHANG X M, et al. Risk of soil salinisation by application of concentrated animal manures[J]. Environmental Science, 2008, 29(1): 183-188.
[15] 蔡茂, 余雪标, 周卫卫, 等. 沼液排放对土壤质量的影响[J]. 热带生物学报, 2014, 5(1): 52-56. DOI:10.15886/j.cnki.rdswxb.2014.01.007.
CAI M, YU X B, ZHOU W W, et al. Effect of slurry on soil quality[J]. Journal of Tropical Biology, 2014, 5(1): 52-56.
[16] 盛婧,徐乔,朱普平,等. 基于分级过滤的喷灌用沼液颗粒物组成分析[J]. 农业工程学报, 2016, 32(8): 212-216. DOI: 10.11975/j.issn.1002-6819.2016.08.030.
SHENG J,XU Q, ZHU P P, et al. Composition analysis of particles filtered from biogas slurry by sieves with different mesh for sprinkling irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2016, 32(8): 212-216.
[17] 张丽萍,刘红江,盛婧,等. 发酵周期、贮存时间和过滤对沼液养分和理化性状变化的影响[J]. 农业资源与环境学报, 2018, 35(1): 32-39. DOI:10.13254/j.jare.2017.0186.
ZHAGN L P,LIU H J,SHENG J, et al. Influence of anaerobic fermentation periods, storage time and filtration on the changes of nutrients and physical and chemical properties of biogas slurry[J].Journal of Agricultural Resources and Environment,2018,35(1):32-39.
[18] 张无敌,尹芳,徐锐, 等. 沼液对土壤生物学性质的影响[J]. 湖北农业科学, 2009, 48(10): 2403-2407. DOI: 10.3969/j.issn.0439-8114.2009.10.023.
ZHANG W D, YIN F, XU R, et al. Effect of biogas liquid on biological properties of soil[J]. Hubei Agricultural Sciences, 2009, 48(10): 2403-2407.
[19] 张红, 王桂良. 沼液和氮肥配施对菜田土壤微生物生物量和活性的影响[J]. 安徽农业科学, 2011, 39(27): 16601-16603,16723. DOI: 10.3969/j.issn.0517-6611.2011.27.043.
ZHANG H, WANG L G. Effect of biogas slurry combinated with nitrogen fertilizer on soil microbial biomass and enzyme activities [J]. Journal of Anhui Agricultural Sciences, 2011, 39(27): 16601-16603,16723.
[20] 周伟, 徐莉, 俞元春, 等. 沼液施肥对杨树林地土壤微生物量碳氮的影响[J]. 林业工程学报, 2015, 29(1): 49-51. DOI: 10.13360/j.issn.1000-8101.2015.01.015.
ZHOU W, XU L, YU Y C, et al. Biogas slurry application influences on soil microbial biomass carbon and nitrogen of poplar plantation[J]. Journal of Forestry Engineering,2015, 29(1): 49-51.
[21] MCFARLAND J W, RUESS R W, KIELLAND K, et al. Glycine mineralization in situ closely correlates with soil carbon availability across sixnorth American forest ecosystems[J]. Biogeochemistry, 2010, 99(1): 175-191. DOI:10.1007/s10533-009-9400-2.
[22] SÄNGER A, GEISSELER D, LUDWIG B. C and N dynamics of a range of biogas slurries as a function of application rate and soil texture: a laboratory experiment[J]. Archives of Agronomy and Soil Science, 2014, 60(12): 1779-1794. DOI:10.1080/03650340.2014.907491.
[23] RINNAN R, BÅÅTH E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil[J]. Appl Environ Microbiol, 2009, 75(11): 3611-3620. DOI:10.1128/AEM.02865-08.
[24] 张维理, 徐爱国, 张认连, 等. 土壤分类研究回顾与中国土壤分类系统的修编[J]. 中国农业科学, 2014, 47(16): 3214-3230. DOI: 10.3864/j.issn.0578-1752.2014.16.009.
ZHANG W L, XU A G, ZHANG R L, et al. Review of soil classification and revision of China soil classification system[J]. Scientia Agricultura Sinica, 2014, 47(16): 3214-3230.
[25] TAMTAM F, DINH T, MOMPELAT S, et al. Assessing the fate of antibiotic contaminants in metal contaminated[J]. Science of the Total Environment, 2011, 409(1): 540-547. DOI:10.1016/j.scitotenv.2010.10. 033.
[26] 吕贻忠, 李保国. 土壤学[M]. 北京:中国农业出版社, 2006.
LYU Y Z, LI B G. Pedology [M]. Beijing: China Agriculture Press, 2006.
[27] 郝民杰, 张硌, 庄松林. 沼液对蚯蚓生长和繁殖的影响[J]. 安徽农业科学, 2011, 38(25): 13739-13740. DOI: 10.3969/j.issn.0517-6611.2010.25.073.
HAO M J, ZHANG L, ZHUANG S L. Effect of biogas liquid on the growth and breeding of earthworm[J]. Journal of Anhui Agricultural Sciences, 2011, 38(25): 13739-13740.
[28] 张昌爱, 张玉凤, 林海涛, 等. 沼液漫灌对设施土壤连作障碍因子的影响[J]. 灌溉排水学报, 2014, 33(2): 117-120. DOI: 10.7631/j.issn.1672-3317.2014.02.030.
ZHANG C A, ZHANG Y F, LIN H T, et al. The effects of biogas slurry on continuous cropping obstacle factors in green-shed[J]. Journal of Irrigation and Drainage, 2014, 33(2): 117-120.
[29] 陈小云, 李辉信, 胡锋,等. 食细菌线虫对土壤微生物量和微生物群落结构的影响[J]. 生态学报, 2004, 24(12): 2825-2831. DOI:10.3321/j.issn:1000-0933.2004.12.023.
CHEN X Y, LI H X, HU F, et al. Effect of bacterivorous nematode on soil microbial biomass and microbiocoenosis [J]. Acta Ecologica Sinica, 2004, 24(12): 2825-2831.
[30] COLEMAN D C, REID C P P, COLE C V. Biologicalstrategies of nutrient nycling in soil systems[J]. Advances in Ecological Research, 1983,13(4): 1-55. DOI:10.1016/s0065-2504(08)60107-5.
[31] 张无敌, 尹芳, 李建昌, 等. 沼液对土壤有机质含量和肥效的影响[J]. 可再生能源, 2008, 26(6): 45-47. DOI: 10.3969/j.issn.1671-5292.2008.06.012.
ZHANG W D, YIN F, LI Y J, et al. Influence of biogas fluid on the organic matter content in soil and its fertilization effect[J]. Renewable Energy Resources, 2008, 26(6): 45-47.
[32] 祝延立, 那伟, 赵新颖, 等. 施用猪场粪污沼液对土壤理化性质的影响[J]. 安徽农业科学, 2012, 40(31): 15202-15203,15213. DOI: 10.3969/j.issn.0517-6611.2012.31.043.
ZHU Y L, NA W, ZHAO X Y, et al. Effects of application of biogas slurry of pig dung on physical and chemical properties of soil[J]. Journal of Anhui Agricultural Sciences, 2012, 40(31): 15202-15203,15213.
[33] 陈维志, 丁秀华. 沼渣对能源生态模式日光温室改立作用的研究[J]. 农村能源, 1995(5): 17-18.
CHEN W Z, DING X H. The study on the effect of biogas residue on the transformation of sunlight greenhouse with energy ecosystem model [J]. Renewable Energy Resources, 1995(5): 17-18.
[34] 杨诗贵, 洪宁, 李铸, 等. 沼液施用背景下稻田土壤养分的含量特征[J]. 江苏农业科学, 2017, 45(2): 239-244. DOI: 10.15889/j.issn.1002-1302.
YANG S G, HONG N, LI Z, et al. Soil nutrient content in paddy field under application of biogas slurry [J]. Jiangsu Agricultural Sciences, 2017, 45(2): 239-244.
[35] 陈永杏, 董红敏, 陶秀萍, 等. 猪场沼液灌溉冬小麦对土壤质量的影响[J]. 中国农学通报, 2011, 27(3): 154-158.
CHEN Y X, DONG H M, TAO X P, et al. Effect of irrigating winter wheat with anaerobic digested swine farm waste water(ADSFW)on soil quality[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 154-158.
[36] 卜丹蓉. 施用沼液和生物炭对杨树林土壤活性有机碳、氮的影响[D]. 南京:南京林业大学, 2015.
BU D R. Effects of biogas slurry and biochar on soil labile organic carbon and nitrogen in a poplar plantation in a coastal area of northern Jiangsu, China[D]. Nanjing:Nanjing Forestry University, 2015.
[37] 杨乐, 张凤华, 庞玮, 等. 沼液灌溉对绿洲农田土壤养分的影响[J]. 石河子大学学报(自然科学版), 2011, 29(5): 542-545. DOI:10.3969/j.issn.1007-7383.2011.05.003.
YANG L, ZHANG F H, PANG W, et al. Effect of biogas fluid irrigation on soil nutrient in oasis farmland[J]. Journal of Shihezi University(Natural Science), 2011, 29(5): 542-545.
[38] 陈贵, 赵国华, 张红梅, 等. 沼液浇灌对茭白生长、品质及土壤养分的影响[J]. 中国沼气, 2016, 34(4): 81-86. DOI: 10.3969/j.issn.1000-1166.2016.04.017.
CHEN G, ZHAO G H, ZHANG H M, et al. Effect of biogas slurry application on growth and product quality of zizania latfolia and soil nutrients[J]. China Biogas, 2016, 34(4): 81-86.
[39] 范韵, 来柳青, 朱立群, 等. 沼液施用对土壤与植物中磷分布的影响[J]. 土壤通报, 2012, 43(3): 702-705. DOI: 10.19336/j.cnki.trtb.2012.03.033.
FAN Y, LAI L Q, ZHU L Q, et al. Effect of biogas slurry amendment on phosphorus distribution in soil and plant[J]. Chinese Journal of Soil Science, 2012, 43(3): 702-705.
[40] 李彦超, 廖新俤, 林东教, 等. 不同沼液灌溉强度对土壤和渗滤液的影响[J]. 家畜生态学报, 2009, 30(4): 52-56. DOI: 10.3969/j.issn.1673-1182.2009.04.014.
LI Y C, LIAO X D, LIN D J, et al. Effects of irrigation in intensity of fermented slurry on soil and leaching liquid[J]. Acta Ecologiae Animalis Domastici, 2009, 30(4): 52-56.
[41] SVOBODA N, TAUBE F, WIENFORTH B, et al. Nitrogen leaching losses after biogas residue application to maize[J]. Soil and Tillage Research, 2013, 130(6): 69-80.DOI: 10.1016/j.still.2013.02.006.
[42] CLARK J M, BOTTRELL S H, EVANS C D, et al. The importance of the relationship between scale and process in understanding long-term DOC dynamics[J]. Science of the Total Environment, 2010, 408(13): 2768-2775. DOI: 10.1016/j.scitotenv.2010.02.046.
[43] 庞学勇, 包维楷, 吴宁. 森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J]. 应用与环境生物学报, 2009, 15(3): 390-398. DOI: 10.3724/SP.J.1145.2009.00390.
PANG X Y, BAO W K, WU N. Influence factors of soil dissoluble organic matter(carbon)in forest ecosystems: a review[J]. Chin J Appl Environ Biol, 2009, 15(3): 390-398.
[44] 王毅琪, 韩文彪, 赵玉柱, 等. 沼液对土壤理化性质的影响[J]. 安徽农业科学, 2016, 44(1): 193-195. DOI: 10.3969/j.issn.0517-6611.2016.01.064.
WANG Y Q, HAN W B, ZHAO Y Z, et al. Effects of biogas slurry on soil physical and chemical properties [J]. Journal of Anhui Agricultural Sciences, 2016, 44(1): 193-195.
[45] 甘福丁, 魏世清, 覃文能, 等. 施用沼液对玉豆品质及土壤肥效的影响[J]. 中国沼气, 2011, 29(1): 59-60. DOI: 10.3969/j.issn.1000-1166.2011.01.015.
GAN F D, WEI S Q, QIH WN, et al. Effect of biogas slurry on tabe bean quality and soil fertility[J]. China Biogas, 2011, 29(1): 59-60.
[46] 王宗寿. 利用沼液种植黑麦草对土壤环境质量的影响[J]. 农业环境科学学报, 2007, 26(S1): 172-175. DOI: 10.3321/j.issn:1672-2043.2007.z1.038.
WANG Z S. Effects of fertilization with biogas slurry on soil planting tetragold-ryegrass[J]. Journal of Agro-Environment Science, 2007, 26(S1): 172-175.
[47] 王敏锋, 陈硕, 朱謇, 等. 模拟淋溶条件下沼液对菜田土壤磷素淋洗及其形态的影响[J]. 农业资源与环境学报, 2017(4): 368-375. DOI: 10.13254/j.jare.2016.0289.
WANG M F, CHEN S, ZHU J, et al. Effects of application of biogas slurry on the form and mobility of soil phosphorus in vegetable greenhouse field[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 368-375.
[48] ZHANG M K. Effects ofsoil properties on phosphorus subsurface migration in sandy soils[J]. Pedosphere, 2008, 18(5): 599-610. DOI: 10.1016/S1002-0160(08)60054-5.
[49] 赵庆雷, 王凯荣, 谢小立. 长期有机物循环对红壤稻田土壤磷吸附和解吸特性的影响[J]. 中国农业科学, 2009, 42(1): 355-362. DOI: 10.3864/j.issn.0578-1752.2009.01.046.
ZHAO Q L, WANG K R, XIE X L. Effects of organic nutrient recycling on phosphorus adsorption-desorption characteristics in a reddish paddy rice system[J]. Scientia Agricultura Sinica, 2009, 42(1): 355-362.
[50] 王敏锋, 严正娟, 陈硕, 等. 施用粪肥和沼液对设施菜田土壤磷素累积与迁移的影响[J]. 农业环境科学学报, 2016, 35(7): 1351-1359. DOI: 10.11654/jaes.2016.07.018.
WANG M F, YAN Z J, CHEN S, et al. Effects of manure and biogas slurry applications on phosphorus accumulation and mobility in organic vegetable soil under greenhouse[J]. Journal of Agro-Environment Science, 2016, 35(7): 1351-1359.
[51] HUANG Q, ZHAO Z, CHEN W. Effects of several low-molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals[J]. Chemosphere, 2003, 52: 571-579. DOI: 10.1 016/S0045-6535(03)000238-8.
[52] 吴树彪, 崔畅, 张笑千, 等. 农田施用沼液增产提质效应及水土环境影响[J]. 农业机械学报, 2013, 44(8): 118-125. DOI: 10.6041 /j.issn.1000-1298.2013.08.021.
WU S B, CUI C, ZHANG X Q, et al. Effect of biogas slurry on yield increase, quality improvement, water and soil environment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 118-125.
[53] AKSU Z. Application of biosorption for the removal of organic pollutants: a review[J]. Process Biochemistry, 2005, 40(3): 997-1026. DOI: 10.1016/j.procbio.2004.04.008.
[54] ZAPOTOCZNY S, JURKIEWICZ A, TYLKO G, et al. Accumulation of copper byacremonium pinkertoniae, a fungus isolated from industrial wastes[J]. Microbiol Res, 2007, 162(3): 219-228. DOI:10.1016/j.micres.2 006. 03.008.
[55] BLACKWELL K J, SINGLETON I, TOBIN J M. Metal cation uptake by yeast: a review[J]. Appl Microbiol Biotechno, 1995, 43: 579-584. DOI: 10.1007/s002530050454.
[56] SASSMAN S A, LEE L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange[J]. Environ Sci Technol, 2005, 39(19): 7452-7459. DOI:10.1021/es0480217.
[57] TER LAAK T L, WOUTER A G, TOLLS J. The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil[J]. Environ Toxicol Chem, 2006, 25(4): 904-911. DOI:10.1897/05-232r.1.
[58] BAJPAI A K, BAJPAI J, SHUKLA S. Release dynamics of tetracycline from a loaded semi-interpenetrating polymeric material of polyvinyl alcohol and poly(acrylamide-co-styrene)[J]. Journal of Materials Science Materials in Medicine, 2003, 14(4): 347-357. DOI: 10.1023/A:1022983932548.
[59] PERSSON Y, HEMSTRÖM K, OBERG L, et al. Use of a column leaching test to study the mobility of chlorinated HOCs from a contaminated soil and the distribution of compounds between soluble and colloid phases[J]. Chemosphere, 2008, 71(6): 1035-1042. DOI:10.1016/j.chemosphere.2007.12.008.
[60] KUMAR R R, PARK B J, CHO J Y. Application and environmental risks of livestock manure[J]. Journal of the Korean Society Forapplied Biological Chemistry, 2013, 56(5): 497-503. DOI:10.1007/s13765-013-3184-8.
[61] DIOP M, HOWSAM M, DIOP C, et al. Spatial and seasonal variations of trace elements concentrations in liver and muscle of roundsardinelle(Sardinella aurita)and senegalese sole(Solea senegalensis)along the senegalese coast[J]. Chemosphere, 2016, 144: 758-766. DOI: 10.1016/j.chemosphere.2015.08.085.
[62] 朱泉雯. 重金属在猪饲料-粪污-沼液中的变化特征[J]. 水土保持研究, 2014, 21(6): 284-289. DOI: 10.138 69/j.cnki.rswc.2014.06.053.
ZHU Q W. Distribution characteristics of heavy metals in feeds,pig manures and biogas slurry[J]. Research of Soil and Water Conservation, 2014, 21(6): 284-289.
[63] 阮玉龙, 李向东, 黎廷宇, 等. 喀斯特地区农田土壤重金属污染及其对人体健康的危害[J]. 地球与环境, 2015, 43(1): 92-97. DOI: 10.14050/j.cnki.1672-9250.2015.01.013.
RUAN Y L, LI X D, LI T Y, et al. Heavy metal pollution in agricultural soils of the a karst areas and its harm to human health[J]. Earth and Environment, 2015, 43(1): 92-97.
[64] VIJVER M G, VINK J P M, JAGER T, et al. Kinetics of Zn and Cd accumulation in the Isopod Porcellio scaber exposed to contaminated soil and/or food[J]. Soil Biology and Biochemistry, 2006, 38(7): 1554-1563. DOI: 10.1016/j.soilbio.2005.11.006.
[65] VIJVER M G, VINK J P M, JAGER T, et al. Biphasic elimination and uptake kinetics of Zn and Cd in the earthworm Lumbricus rubellus exposed to contaminated floodplain soil[J]. Soil Biology and Biochemistry, 2005, 37(10): 1843-1851. DOI:10.1016/j.soilbio.2005.02.016.
[66] CORP N, MORGAN A J. Accumulation of heavy metals from polluted soils by the earthworm,Lumbricus rubellus: can laboratory exposure of ‘control’ worms reduce biomonitoring problems[J]. Environmental Pollution, 1991, 74(1): 39-52. DOI: 10.1016/0269-7491(91)90025-R.
[67] CHEUNG S G, TAI K K, LEUNG C K, et al. Effects of heavy metals on the survival and feeding behaviour of the sandy shore scavenging gastropod Nassarius festivus(Powys)[J]. Marine Pollution Bulletin, 2002, 45(1/12): 107-113. DOI: 10.1016/S0025-326X(01)00324-1.
[68] 黄宇民, 叶晶, 苗纪法, 等. 沼液灌溉对土壤渗滤液重金属含量的影响[J]. 绿色科技, 2014(5):215-216,220. DOI: 10.3969/j.issn.1674-9944.2014.05.095.
HUAG Y M, YE J, MIAO J F, et al. Effect of biogas slurry irrigation on heavy metal content in soil leachate [J]. Journal of Green Science and Technology, 2014(5): 215-216,220.
[69] LI Y X, LI W, WU J, et al. Contribution of additives Cu to its accumulation in pig feces: study in Beijing and Fuxin of China[J]. Journal of Environmental Sciences, 2007, 19(5): 610-615. DOI:10.3321/j.issn:1001-0742. 2007.05.016.
[70] MA J, LIN H, SUN W, et al. Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination[J]. Environmental Science and Pollution Research, 2014, 21(12): 7436-7448. DOI:10.1007/s1 1356-014-2685-2.
[71] WEN B, HUANG R, WANG P, et al. Effect of complexation on the accumulation and elimination kinetics of cadmium and ciprofloxacin in the earthworm Eisenia fetida[J]. Environ Sci Technol, 2011, 45(10): 4339-4345. DOI:10.1021/es104034g.
[72] NORR C, RIEPERT F. Bioaccumulation studies with Eisenia fetida using an established degradation test system[J]. Journal of Soils and Sediments, 2007, 7(6): 393-397. DOI:10.1065/jss2007.08.251.
[73] CHRISTIAN M, NATHALIE C, MICKAEL H, et al. Earthworms highly increase ciprofloxacin mineralization in soils[J]. Environmental Chemistry Letters, 2013, 11(2): 127-133. DOI:10.1007/s10311-012-0385-z.

Last Update: 2019-05-15