我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

野茉莉属6个树种不同时期花香成分分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年04期
Page:
48-56
Column:
研究论文
publishdate:
2019-07-24

Article Info:/Info

Title:
Analysis of volatile components in different flowering stages in six species of Styrax spp.
Article ID:
1000-2006(2019)04-0048-09
Author(s):
Analysis of volatile components in different flowering stages in six species of Styrax spp.
(Co-Innovation Center for the Sustainable Forestry in Southern China,College of Forestry, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
Styrax spp. headspace solid phase microextraction(HS-SPME) gas chromatography-mass spectrometry(GC-MS) terpenes compound
Classification number :
S685.99
DOI:
10. 3969/ j. issn. 1000-2006. 201809002
Document Code:
A
Abstract:
【Objective】 Many Styrax spp. are widely distributed in China. Analysis of the floral constituents of different Styrax spp. in different periods is beneficial to determine the main floral components and chemical structure of Styrax spp. and to provide a theoretical basis for the utilization of their flowers. 【Method】 In this experiment, headspace solid phase microextraction(HS-SPME)and gas chromatography-mass spectrometry(GC-MS)were used to detect the floral components in the flower bud, full blossom, and final flowering stages of six species. 【Result】 Terpenes were the main constituents of the floral components of six Styrax spp. The terpenoids detected at different flowering stages were generally the same. At each flowering stage, the highest content of terpenes in S. japonicus was germacrene-D, which was significantly higher than that in other tree species. The terpene present at the highest level in S. grandiflora and S. calvescens was α-pinene, and the relative content of α-pinene in S. calvescens was significantly higher than that in other tree species; The highest content of terpenes in S. odoratissimus, S. dasyantha, and Styrax faberi var. faberi was basilene, and the relative content of basilene in S. faberi var. faberi was significantly higher than that in other tree species. The relative content of verbenone in S. grandiflora, of caryophyllene and α-rhedene in S. faberi var. faberi, of(E)-β-ocimene in S. odoratissimus, and of α-isoterenene in S. calvescens was higher than that in other tree species. 【Conclusion】 Many kinds of floral components are present in Styrax spp., among which, terpene compounds are the most abundant.

References

[1] 向林, 陈龙清. 花香的基因工程研究进展[J]. 中国农业科学, 2009, 42(6):2076-2084. DOI:10.3864/j.issn.0578-1752.2009.06.025. XIANG L, CHEN L Q. Adavances in genetic engineering of floral scent[J]. Scientia Agricultura Sinica, 2009, 42(6):2076-2084. [2] 李海燕, 李火根, 杨秀莲,等. 植物花香物质合成与调控研究进展[J]. 分子植物育种, 2018, 16(1):123-129. DOI:10.13271/j.mpb.016.000123. LI H Y, LI H G, YANG X L, et al. Advances studies on the synthesis and regulation of floral substances in plant[J]. Molecular Plant Breeding, 2018, 16(1):123-129. [3] RAGUSO R A, PELLMYR O. Dynamic headspace analysis of floral volatiles: a comparison of methods[J]. Oikos, 1998, 81(2): 238. DOI:10.2307/3547045. [4] 张晓林, 林祖铭, 金声, 等. 杭州桂花头香成份的研究[J]. 高等学校化学学报, 1986, 7(8): 695-700. DOI: 10.3321/j.issn:0251-0790.1986.08.006. ZHANG X L, LIN Z M, JIN S, et al. A study on the composition of top note of Osmanthus in Hangzhou[J]. Chemical Research in Chinese Universities, 1986, 7(8): 695-700. [5] STASHENKO E E, MARTíNEZ J R. Sampling flower scent for chromatographic analysis[J]. Journal of Separation Science, 2008, 31(11): 2022-2031. [6] LI Z G, LEE M R, SHEN D L. Analysis of volatile compounds emitted from fresh Syringa oblata flowers in different florescence by headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Analytica Chimica Acta, 2006, 576(1): 43-49. DOI:10.1016/j.aca.2006.01.074. [7] CHERRI-MARTIN M, JULLIEN F, HEIZMANN P, et al. Fragrance heritability in hybrid tea roses[J]. Scientia Horticulturae, 2007, 113(2): 177-181. DOI:10.1016/j.scienta.2007.03.002. [8] KNUDSEN J T, TOLLSTEN L, BERGSTRÖM L G. Floral scents: a checklist of volatile compounds isolated by head-space techniques[J]. Phytochemistry, 1993, 33(2): 253-280. DOI:10.1016/0031-9422(93)85502-i. [9] DUDAREVA N, PICHERSKY E. Biochemical and molecular genetic aspects of floral scents[J]. Plant Physiology, 2000, 122(3): 627-634. DOI:10.1104/pp.122.3.627. [10] JABALPURWALA F A, SMOOT J M, ROUSEFF R L. A comparison of Citrus blossom volatiles[J]. Phytochemistry, 2009, 70(11/12): 1428-1434. DOI:10.1016/j.phytochem.2009.07.031. [11] 张辉秀, 冷平生, 胡增辉, 等. ‘西伯利亚’百合花香随开花进程变化及日变化规律[J]. 园艺学报, 2013, 40(4): 693-702. DOI:10.16420/j.issn.0513-353x.2013.04.012. ZHANG H X, LENG P S, HU Z H, et al. The floral scent emitted from Lilium ‘Siberia’at different flowering stages and diurnal variation[J]. Acta Horticulturae Sinica, 2013, 40(4): 693-702. [12] 施婷婷, 杨秀莲, 王良桂. ‘波叶金桂’花香成分的释放规律[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 97-104. DOI:10.3969/j.issn.1000-2006.201612033. SHI T T, YANG X L, WANG L G. Study on the aroma component emission pattern of Osmanthus fragrans ‘Boye Jingui’[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(2): 97-104. [13] 黄淑美. 安息香科的系统位置及地理分布[J]. 热带亚热带植物学报, 1994, 2(4): 15-30. DOI:10.3969/j.issn.1005-3395.1994.4.002. HUANG S M. Systematic position and geographical distribution of styracaceae[J]. Journal of Tropical and Subtropical Botany, 1994, 2(4): 15-30. [14] 王哲宇, 童丽丽, 汤庚国. 野茉莉科植物地理分布研究进展[J]. 金陵科技学院学报, 2013, 29(1):65-71. DOI: DOI:10.16515/j.cnki.32-1722/n.2013.01.006. WANG Z Y, TONG L L, TANG G G. Geographic distribution of styracaceae[J]. Journal of Jinling Institute of Technology, 2013, 29(1): 65-71. [15] 任杰, 李娟, 徐博,等. 野茉莉的研究进展[J]. 中成药, 2018, 40(4): 913-920.. DOI: 10.3969/j.issn.1001-1528.2018.04.029. REN J, LI J, XU B, et al. Research progress of Styrax spp.[J].Chinese Traditional Patent Medicine, 2018, 40(4): 913-920. [16] ZHANG Z H, WANG X J, LUO Y, et al. Carbon competition between fatty acids and starch during benzoin seeds maturation slows oil accumulation speed[J]. Trees, 2017, 31(3): 1025-1039. DOI: 10.1007/s00468-017-1528-4. [17] 白婷. 东京野茉莉容器育苗技术研究[D]. 南京: 南京林业大学, 2014. BAI T. Studies on the techniques of containeried nuesry of Styrax tonkinensis[D]. Nanjing: Nanjing Forestry University,2014. [18] 徐丽萍, 喻方圆. 东京野茉莉花色成分的初步研究[J]. 江西农业大学学报, 2016, 38(5): 935-939. DOI:10.13836/j.jjau.2016132. XU L P, YU F Y. A preliminary study on color component of Styrax tonkinensis flower[J]. Acta Agriculturae Universitatis Jiangxiensis, 2016, 38(5): 935-939. [19] 陈青, 姚蓉君, 张前军. 固相微萃取气质联用分析野茉莉花的香气成分[J]. 精细化工, 2007, 24(2): 159-161. DOI:10.13550/j.jxhg.2007.02.015. CHEN Q, YAO R J, ZHANG Q J. Analysis of volatile components from flowers of Styrax japonicus Sieb.by GC-MS with solid-phase microextraction[J]. Fine Chemicals, 2007, 24(2): 159-161. [20] 史冬辉, 刘洪波, 杨小丰, 等. 黄山木兰精油对9种植物病原真菌的抑菌活性[J]. 浙江林学院学报, 2009, 26(2): 223-227. DOI:10.3969/j.issn.2095-0756.2009.02.013. SHI D H, LIU H B, YANG X F, et al. Antifungal activity of the essential oil from Magnolia cylindrica on nine phytopathogenic fungi[J]. Journal of Zhejiang Forestry College, 2009, 26(2): 223-227. [21] 陈炳华, 王明兹, 刘剑秋. 乐东拟单性木兰花部挥发油的化学成分及其抑菌活性[J]. 武汉植物学研究, 2002, 20(3): 229-232. DOI:10.3969/j.issn.2095-0837.2002.03.015. CHEN B H, WANG M Z, LIU J Q. Chemical constituents of the volatile oil of Parakmeria lotungensis flower and its antibacterial activities in vitro[J]. Journal of Wuhan Botanical Research, 2002, 20(3): 229-232. [22] 何翠娟, 张颂函. d-柠檬烯生物增效杀虫剂在农业生产上的应用和开发前景[J]. 世界农药, 2008, 30(4):30-32, 50. DOI: 10.3969/j.issn.1009-6485.2008.04.006. HE C J, ZHANG S H. Application and development prospects of d-limonene bio-enhanced insecticides in agricultural production[J]. World Pesticides, 2008, 30(4):30-32, 50. [23] 王桂荣, 李峰奇, 杨婷,等. 一种与(E)-β-石竹烯和(E)-α-律草烯合成相关的蛋白及其应用: CN 105524908 A[P]. 2016-04-27. WANG G R, LI F Q, YANG T, et al. Protein related to synthesis of(E)-β-caryophyllene and(E)-α-rhalene and its application: CN105524908 A[P]. [24] 王金娥, 朱岳麟, 熊常健. 月桂烯的来源及其在香料化学中的应用[J]. 山东化工, 2011, 40(3): 47-50. DOI: DOI:10.19319/j.cnki.issn.1008-021x.2011.03.011. WANG J E, ZHU Y L, XIONG C J. Sources and application in perfume chemistry of myrcene[J]. Shandong Chemical Industry, 2011, 40(3): 47-50. [25] 占爱瑶, 由香玲, 詹亚光. 植物萜类化合物的生物合成及应用[J]. 生物技术通讯, 2010, 21(1): 131-135. DOI:10.3969/j.issn.1009-0002.2010.01.032. ZHAN A Y, YOU X L, ZHAN Y G. Biosynthetic pathway and applications of plant terpenoid isoprenoid[J]. Letters in Biotechnology, 2010, 21(1): 131-135. [26] 秦军. 洋水仙香气成分的鉴定与香气形成机制研究[D]. 福州: 福建农林大学, 2017. QIN J. Identification of aromatic components and mechanism of aroma formation of Narcissus spp.[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. [27] ALLEBONE J E, HAMILTON R J, KNIGHTS B A, et al. Cuticular leaf waxes part II.Chenopodium album L. and Lolium perenne L.[J]. Chemistry and Physics of Lipids, 1970, 4(1): 37-46. DOI:10.1016/0009-3084(70)90061-7. [28] 李莹莹. 萜烯类与苯丙酸类花香挥发物的生物合成与调节[J]. 生物技术, 2012, 22(2): 86-91. DOI:10.3969/j.issn.1004-311X.2012.02.051. LI Y Y. Biosynthesis and affecting factors of terpenes and phenylpropanoids volatiles in plant flowers[J]. Biotechnology, 2012, 22(2): 86-91. [29] 刘倩, 孙国峰, 张金政, 等. 玉簪属植物花香研究[J]. 中国农业科学, 2015, 48(21): 4323-4334. DOI:10.3864/j.issn.0578-1752.2015.21.012. LIU Q, SUN G F, ZHANG J Z, et al. Study on floral scent of the genus Hosta[J]. Scientia Agricultura Sinica, 2015, 48(21): 4323-4334. [30] MINHTU N T, ONISHI Y, CHOI H S, et al. Characteristic odor components of Citrus sphaerocarpa Tanaka(Kabosu)cold-pressed peel oil[J]. Journal of Agricultural and Food Chemistry, 2002, 50(10): 2908-2913. DOI:10.1021/jf011578a. [31] 苏越, 刘素红, 王呈仲, 等. 谱图相似度分析结合保留指数对单萜烯同分异构体的GC-MS定性分析[J]. 分析测试学报, 2009, 28(5): 525-528. DOI:10.3969/j.issn.1004-4957.2009.05.004. SU Y, LIU S H, WANG C Z, et al. Qualitative analysis of monoterpene isomers by GC-MS with spectral similarity analysis and retention index[J]. Journal of Instrumental Analysis, 2009, 28(5): 525-528. [32] DOBSON H E M, BERGSTRÖM G, GROTH I. Differences in fragrance chemistry between flower parts of Rosa rugosa Thunb.(Rosaceae)[J]. Israel Journal of Botany, 1990, 39(1/2): 143-156. DOI:10.1080/0021213X.1990.10677139. [33] ROHRBECK D, BUSS D, EFFMERT U, et al. Localization of methyl benzoate synthesis and emission in Stephanotis floribunda and Nicotiana suaveolens flowers[J]. Plant Biology, 2006, 8(5): 615-626. DOI:10.1055/s-2006-924076. [34] MACTAVISH H. Volatiles in different floral organs, and effect of floral characteristics on yield of extract from Boronia megastigma(Nees)[J]. Annals of Botany, 1997, 80(3): 305-311. DOI:10.1006/anbo.1997.0451. [35] 袁媛, 孙叶, 李风童,等. 植物花香代谢和基因工程研究进展[J]. 南方园艺, 2017, 28(5):48-52. DOI: 10.3969/j.issn.1674-5868.2017.05.016. YUAN Y, SUN Y, LI F T, et al. Advances in plant floral metabolism and genetic engineering[J]. Southern Horticultural, 2017, 28(5):48-52. [36] 赵印泉, 周斯建, 彭培好,等. 植物花香代谢调节与基因工程研究进展[J]. 热带亚热带植物学报, 2011, 19(4):381-390. DOI:10.3969/j.issn.1005-3395.2011.04.018. ZHAO Y Q, ZHOU S J, PENG P H, et al. Research advances in metabolic regulation and genetic engineering of floral scent[J]. Journal of Tropical and Subtropical Botany, 2011, 19(4):381-390. [37] YANG X L, YUE Y Z, LI H Y, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans [J]. Horticulture Research, 2018, 5:72. DOI:10.1038/S41438-018-0108-0.

Last Update: 2019-07-22