我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

氮磷肥对西南桦无性系生物量分配和根系形态的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年05期
Page:
23-29
Column:
研究论文
publishdate:
2019-09-20

Article Info:/Info

Title:
Effects of nitrogen and phosphorus fertilization on biomass allocation and root morphology in Betula alnoides clones
Article ID:
1000-2006(2019)05-0023-07
Author(s):
LIU Shiling1 CHEN Lin1 YANG Baoguo1 JIA Hongyan1* PANG Shengjiang1 ZHANG Pei1 WANG Hui2
(1. Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang 532600, China; 2. Key Laboratory of Forest Ecology and Environment, State Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China)
Keywords:
Betula alnoides clone nitrogen phosphorus fertilization biomass allocation root morphology
Classification number :
S723.7
DOI:
10.3969/j.issn.1000-2006.201809018
Document Code:
A
Abstract:
【Objective】 Betula alnoides is a native, fast-growing, broad-leaved tree species found in the tropical and subtropical regions of China, and it has a high economic value and ecological benefits. The availability and spatial distribution of nitrogen(N)and phosphorus(P)significantly affect plant growth and root development. By studying the effect of fertilization on biomass allocation and root morphology in B. alnoides clones, the optimum B. alnoides clone and fertilization treatments were screened to provide scientific guidance for cultivating B. alnoides. 【Method】Four B. alnoides clones(A5, FB4, FB4+ and BY-1)were selected as research materials, and a completely randomized experimental design was conducted with nine treatments including three N levels(0, 200 and 400 mg/seedling)and three P levels(0, 70 and 140 mg/seedling)with three replications and 25 plants for each subplot. To prevent nutrient deficiency in seedlings, 332 mg/seedling potassium(K)was applied. P fertilizer was supplied to the medium as a basal fertilizer. The application of N and K fertilizers was initiated at 1 month after seedling transplantation and was conducted at intervals of 7 days for a total of 10 times. When the seedlings were harvested, the roots were separated and scanned to measure morphological indexes(root length, surface area, volume and mean diameter). Finally, whole plants were dried to determine the biomass of each part, and the biomass allocation and root morphology of B. alonoides clones under different fertilization treatments were compared. 【Result】① The above-ground, below-ground and total biomass were significantly affected by fertilization treatment and differed according to clones, but they were not influenced by the interaction between clones and fertilization treatment. Compared with the control treatment, the fertilization treatment significantly increased the above-ground, below-ground, and total biomass. Regardless of the clone, treatment 5(200 mg/seedling N+70 mg/seedling P)resulted in the highest biomass among all treatments, which was 11.27%-460.49%, 7.14%-200.00% and 10.57%-390.09% higher than the other treatments for above ground, below ground, and total biomass, respectively. On further comparing different clones, FB4+ showed obvious growth advantages, with an above ground, below ground, and total biomass of 1.14-1.21, 1.22-1.31 and 1.15-1.22 times than those of other clones(A5,FB4 and BY-1), respectively. ② The root surface area, mean diameter and total length were significantly different among different clones and fertilization treatments. Except the total length of roots with a diameter of <2 mm, the interaction effect between clones and fertilization treatment resulted in significant differences in terms of root volume, surface area, mean diameter and total length. The fertilization treatment improved root morphology compared with the control treatment. In all clones, treatment 5 resulted in superior root morphological indexes than the other treatments, with values 0.77%-227.20%, 2.13%-152.63%, 0.60%-264.13% and 4.53%-214.04% higher than those of root surface area, mean diameter, volume and total length, respectively. On further comparing the total lengths of fine roots of different diameters, treatment 5 also produced the longest thin fine roots(0 < diameter ≤ 1 mm), thick fine roots(1 < diameter ≤ 2 mm), and coarse roots(diameter>2 mm)in B. alnoides seedlings. The clone FB4+ under treatment 5 exhibited the optimum root morphology among all combinations of clones and fertilization treatment. ③ There were significant positive correlations among the above ground, below ground and total biomass. Further, these three measures of biomass were positively correlated with root mean diameter, total length, surface area and volume. 【Conclusion】 Fertilization significantly increased biomass and promoted root growth of B. alnoides seedlings, although there were differences among clones. Based on biomass and root morphological indexes, clone FB4+ and treatment 5(200 mg/seedling N+70 mg/seedling P)exhibited the optimum growth performance for this tree species.

References

[1] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients[J].New Phytologist,2004, 162(1):9-24.DOI:10.1111/j.1469-8137.2004.01015.x. [2] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J].New Phytologist, 2003, 157(3):423-447. DOI:10.1046/j.1469-8137.2003.00695.x. [3] VITOUSEK P. Nutrient cycling and nutrient use efficiency[J].The American Naturalist,1982,119(4):553-572. DOI:10.1086/283931. [4] 邝雷,邓小梅,余斐,等. 氮、磷、钾配比施肥对任豆容器苗生长的影响[J].华南农业大学学报,2014,35(6):79-82,88.DOI:10.7671/j.issn.1001-411X.2014.06.015. KUANG L, DENG X M, YU F, et al. Effects of fertilization on the growth of Zenia insignis container seedlings[J]. Journal of South China Agricultural University,2014,35(6):79-82. [5] 徐福利,赵亚芳,张潘,等. 施肥对华北落叶松人工林根茎叶中氮磷含量的影响[J].林业科学,2014,50(3):139-143.DOI:10.11707/j.1001-7488.20140320. XU F L, ZHAO Y F, ZHANG P, et al. Effects of fertilization on nitrogen and phosphorus content in roots,stems and leaves of Larix principis-rupprechtii plantation[J].Scientia Silvae Sinicae,2014,50(3):139-143. [6] 周玮,周运超. 施肥对马尾松幼苗及根系生长的影响[J].南京林业大学学报(自然科学版),2011,35(3):13-17.DOI:10.3969/j.issn.1000-2006.2011.03.014. ZHOU W, ZHOU Y C. Effect on the growth of Pinus massoniana seedlings and root under different fertilizer treatments[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2011,35(3):13-17. [7] 王力朋,晏紫伊,李吉跃,等. 指数施肥对楸树无性系生物量分配和根系形态的影响[J].生态学报,2012,32(23): 7452-7462.DOI:10.5846/stxb201203040288. WANG L P, YAN Z Y, LI J Y, et al. Effects of exponential fertilization on biomass allocation and root morphology of Catalpa bungei clones[J].Acta Ecologica Sinica,2012,32(23):7452-7462. [8] 韦如萍,胡德活,陈金慧,等.低磷胁迫下杉木无性系根系形态及养分利用响应研究[J].南京林业大学学报(自然科学版),2018,42(2):1-8.DOI:10.3969/j.issn.1000-2006.201704027. WEI R P, HU D H, CHEN J H, et al. Response of roots morphological characteristics and nutrient utilization to low phosphorus stress among five clones of Cunninghamia lanceolate(Lamb.)Hook[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2018,42(2):1-8. [9] 宋平,张蕊,张一,等.模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J].植物生态学报,2016,40(11):1136-1144.DOI:10.17521/cjpe.2016.0109. SONG P, ZHANG R, ZHANG Y, et al. Effects of simulated nitrogen deposition on fine root morphology,nitrogen and phosphorus efficiency of Pinus massoniana clone under phosphorus deficiency[J].Chinese Journal of Plant Ecology,2016,40(11):1136-1144. [10] 蒋云东,王达明,邱琼,等.7种热带阔叶树种的苗木施肥试验[J].云南林业科技,2003(2):11-16.DOI:10.16473/j.cnki.xblykx1972.2003.02.004. JIANG Y D, WANG D M, QIU Q, et al. Fertilization experiment on young plants of seven broad-leaved tree species indigenous to tropical areas[J].Yunnan Forestry Science and Technology,2003(2):11-16. [11] 郑海水,杨斌,傅强,等.不同施肥措施对西南桦幼林生长的影响[J].西部林业科学,2007,36(3):1-6. DOI:10.16473/j.cnki.xblykx1972.2007.03.004. ZHENG H S, YANG B, FU Q, et al. Effect of different fertilization treatments on sapling growth of Betula alnoides[J].Journal of West China Forestry Science,2007,36(3):1-6. [12] 陈琳,曾杰,徐大平,等.氮素营养对西南桦幼苗生长及叶片养分状况的影响[J].林业科学,2010,46(5):35-40.DOI:10.11707/j.1001-7488.20100506. CHEN L, ZENG J, XU D P, et al. Effects of exponential nitrogen loading on growth and foliar nutrient status of Betula alnoides seedlings[J].Scientia Silvae Sinicae,2010,46(5):35-40. [13] CHEN L,JIA H Y,ZENG J,et al.Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply[J].Annals of Forest Research,2016,59(2):199-207.DOI:10.15287/afr.2016.561. [14] 李化山,汪金松,法蕾,等.模拟氮沉降对油松幼苗生长的影响[J].应用与环境生物学报,2013,19(5):774-780.DOI:10.3724/SP.J.1145.2013.00774. LI H S, WANG J S, FA L,et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis[J].Chinese Journal of Applied and Environmental Biology,2013,19(5):774-780. [15] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001-11006.DOI:10.1073/pnas.0403588101. [16] CHEN L, JIA H Y, DELL B, et al. Responses of Castanopsis hystrix seedlings to macronutrient imbalances: growth,photosynthetic pigments and foliar nutrient interactions[J].Journal of Plant Nutrition,2016,39(12):1663-1671.DOI:10.1080/01904167.2016.1161784. [17] LI J Y, GUO Q X, ZHANG J X, et al. Effects of nitrogen and phosphorus supply on growth and physiological traits of two Larix species[J].Environmental and Experimental Botany,2016,130:206-215.DOI:10.1016/j.envexpbot. 2016.06.006. [18] STUDER C, HU Y C, SCHMIDHALTER U. Interactive Effects of N-, P-and K-nutrition and drought stress on the development of maize seedlings[J].Agriculture,2017,7(11):90-102.DOI:10.3390/agriculture7110090. [19] 王益明,李瑞瑞,张慧,等.指数施肥对美国山核桃幼苗生物量及氮积累的影响[J].生态学杂志,2018,37(10): 2920-2926.DOI:10.13292/j.1000-4890.201810.028. WANG Y M, LI R R, ZHANG H, et al. Effects of exponential fertilization on biomass and nitrogen accumulation of Carya illinoensis seedlings[J].Chinese Journal of Ecology,2018,37(10):2920-2926. [20] WANG J R, HAWKINS C D B, LETCHFORD T. Relative growth rate and biomass allocation of paper birch(Betula papyrifera)populations under different soil moisture and nutrient regimes[J].Canadian Journal of Forest Research,1998,28(1):44-55.DOI:10.1139/cjfr-28-1-44. [21] DENG S X, SHI K K, MA J, et al. Effects of fertilization ratios and frequencies on the growth and nutrient uptake of Magnolia wufengensis(Magnoliaceae)[J].Forests,2019,10(1):65-94.DOI:10.3390/f10010065. [22] TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in hawaiian rain forests[J].Ecology,2001,82(4):946-954.DOI:10.2307/2679894. [23] GÜSEWELL S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus[J].Plant Ecology,2005,176(1):35-55.DOI:10.1007/s11258-004-0010-8. [24] 白晶晶,吴俊文,何茜,等.不同配方施肥对楸树幼苗生物量分配及养分利用的影响[J].华南农业大学学报,2015,36(6):91-97.DOI:10.7671/j.issn.1001-411X.2015.06.015. BAI J J, WU J W, HE Q, et al. Effects of different fertilization formulas on Catalpa bungei seedling biomass allocation and nutrient use efficiency[J].Journal of South China Agricultural University,2015,36(6):91-97. [25] MANTER D K, KAVANAGH K L, ROSE C L. Growth response of Douglas-fir seedlings to nitrogen fertilization:importance of Rubisco activation state and respiration rates[J].Tree Physiology,2005,25(8):1015-1021.DOI:10.1093/treephys/25.8.1015. [26] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north american trees[J]. Ecological Monographs,2002,72(2):293-309.DOI:10.2307/3100029. [27] EINSMANN J C, JONES R H, PU M, et al. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms[J].Journal of Ecology,1999,87(4):609-619.DOI:10.1046/j.1365-2745.1999.00376.x. [28] CAO P, REN Y Z, ZHANG K P, et al. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat[J].Molecular Breeding,2014,33(4):975-985. DOI:10.1007/s11032-013-0013-z. [29]刘莹,王国梁,刘国彬,等.不同分类系统下油松幼苗根系特征的差异与联系[J].植物生态学报,2010,34(12): 1386-1393.DOI:10.3773/j.issn.1005-264x.2010.12.004. LIU Y, WANG G L, LIU G B, et al. Difference and inherent linkage of root characteristics in different root classification of Pinus tabulaeformis seedling biomass allocation and nutrient use efficiency[J].Journal of South China Agricultural University,2015,36(6):91-97. [25] MANTER D K, KAVANAGH K L, ROSE C L. Growth response of Douglas-fir seedlings to nitrogen fertilization:importance of Rubisco activation state and respiration rates[J].Tree Physiology,2005,25(8):1015-1021.DOI:10.1093/treephys/25.8.1015. [26] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north american trees[J]. Ecological Monographs,2002,72(2):293-309.DOI:10.2307/3100029. [27] EINSMANN J C, JONES R H, PU M, et al. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms[J].Journal of Ecology,1999,87(4):609-619.DOI:10.1046/j.1365-2745.1999.00376.x. [28] CAO P, REN Y Z, ZHANG K P, et al. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat[J].Molecular Breeding,2014,33(4):975-985. DOI:10.1007/s11032-013-0013-z. [29]刘莹,王国梁,刘国彬,等.不同分类系统下油松幼苗根系特征的差异与联系[J].植物生态学报,2010,34(12): 1386-1393.DOI:10.3773/j.issn.1005-264x.2010.12.004. LIU Y, WANG G L, LIU G B, et al. Difference and inherent linkage of root characteristics in different root classification of edlings[J].Chinese Journal of Plant Ecology,2010,34(12):1386-1393. [30] TATENO R, HISHI T, TAKEDA H. Above-and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen[J].Forest Ecology Management,2004,193(3):297-306.DOI:10.1016/j.foreco.2003.11.011.

Last Update: 2019-10-08