我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于SNP标记的广东省松材线虫种群分化研究(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2019年06期
Page:
25-31
Column:
专题报道
publishdate:
2019-11-25

Article Info:/Info

Title:
Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers
Article ID:
1000-2006(2019)06-0025-07
Author(s):
HUANG JinsiXI XiaotongDING XiaoleiYE Jianren*
(Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
Bursaphelenchus xylophilus high-throughput sequencing SNP cluster analysis Guangdong Province
Classification number :
S763
DOI:
10.3969/j.issn.1000-2006.201903007
Document Code:
-
Abstract:
【Objective】This study is focused on the genetic variations and population structures among different Bursaphelenchus xylophilus strains isolated from Guangdong Province using single nucleotide polymorphisms(SNPs)as markers. This work provided fundamental information for the establishment of a B. xylophilus tracking system in China.【Method】Thirty strains of B. xylophilus from different regions of the Guangdong Province were collected and sequenced. Genome-wide SNPs were analyzed using bioinformatics, and population splitting events were discovered based on previous SNP data.【Result】Statistical analysis of SNPs across 30 B. xylophilus strains showed that the number of SNPs and homozygotes in seven of the 30 strains(GD01, GD09, GD12, GD20, GD22, GD24 and GD25)were less than the remaining 23 strains. The genotypes that occurred with a higher frequency in these seven strains were A->G, C->G, G->C, T->C, while the other 23 strains contained genotypes that were A->G, C->T, G->A, T->C. The strains from Guangdong Province could be divided into 3 populations based on PCA and hierarchical clustering.【Conclusion】The genetic diversity of B. xylophilus population in Guangdong Province is relatively high; thus, it should have different sources through which genetic variation is introduced.

References

[1] PROENCA D N, GRASS G, MORAIS P V. Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode.[J]. Microbiology Open, 2017, 6(2):1-20. DOI:10.1002/mbo3.415.
[2] MOTA M M, VIEIRA P. Pine wilt disease: a worldwide threat to forest ecosystems[M]. Berlin: Springer Netherlands, 2008.
[3] COURTOIS B, FROUIN J, GRECO R, et al. Genetic diversity and population structure in a European collection of rice[J]. Crop Science, 2012, 52(4): 1663-1657. DOI:10.2135/cropsci2011.11.0588.
[4] SINGH N, CHOUDHURY D R, SINGH A K, et al. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties[J]. PLoS One, 2013, 8(12): e84136. DOI:10.1371/journal.pone.0084136.
[5] HAYDEN M J, TABONE T L, NGUYEN T M, et al. An informative set of SNP markers for molecular characterisation of Australian barley germplasm[J]. Crop and Pasture Science, 2010, 61(1): 70-83. DOI:10.1071/CP09140.
[6] 张路平,孔繁瑶,杨宝君. 松材线虫和拟松材线虫不同株系线粒体DNA RAPD分析[J]. 林业科学研究, 2002,15(1): 7-12. DOI:10.13275/j.cnki.lykxyj.2002.01.002. ZHANG L P, KONG F Y, YANG B J. Intra-and interspecific variation in Bursaphelenchus xylophilus and B.mucronatus revealed by mtDNA polymorphism[J]. Forest Research, 2002,15(1): 7-12.
[7] VIEIRA P, CASTAGNONE C, MALLEZ S, et al. Sequence variability of the Mspl satellite DNA family of the pinewood nematode Bursaphelenchus xylophilus at different geographic scales[J]. Molecular Phylogenetics and Evolution, 2014, 70(1): 120-129. DOI:10.1016/j.ympev.2013.09.017.
[8] FILIPIAK A, HASIóW-JAROSZEWSKA B. The use of real-time polymerase chain reaction with high resolution melting(real-time PCR-HRM)analysis for the detection and discrimination of nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus[J]. Molecular and Cellular Probes, 2016, 30(2): 113-117. DOI:10.1016/j.mcp.2016.02.003.
[9] ZHOU L F, CHEN F M, XIE L Y, et al. Genetic diversity of pine-parasitic nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus in China[J]. Forest Pathology, 2017, 47(4): e12334. DOI:10.1111/efp.12334.
[10] 唐立群,肖层林,王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012,28(12): 154-158. DOI:10.3969/j.issn.1000-6850.2012.12.028. TANG L Q, XIAO C L, WANG W P. Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012,28(12): 154-158.
[11] CHENG X Y, CHENG F X, XU R M, et al. Genetic variation in the invasive process of Bursaphelenchus xylophilus(Aphelenchida: Aphelenchoididae)and its possible spread routes in China[J]. Heredity, 2008, 100(4): 356-365. DOI:10.1038/sj.hdy.6801082.
[12] MALLEZ S, CASTAGNONE C, ESPADA M, et al. Worldwide invasion routes of the pinewood nematode: what can we infer from population genetics analyses?[J]. Biologocal Invasions, 2015, 17(4): 1199-1213. DOI:10.1007/ s10530-014-0788-9.
[13] MALLEZ S, CASTAGNONE C, ESPADA M, et al. First insights into the genetic diversity of the pinewood nematode in its native area using new polymorphic microsatellite loci[J]. PLoS One, 2013, 8(3):e59165. DOI:10.1371/journal.pone.0059165.
[14] 刘维志. 植物线虫志[M]. 北京: 中国农业出版社, 2004.
[15] 陈凤毛,叶建仁,吴小芹,等. 松材线虫SCAR标记与检测技术[J]. 林业科学, 2012,48(3): 88-94. DOI:10.11707/j.1001-7488.20120314. CHEN F M, YE J R, WU X Q, et al. SCAR marker and detection technique of Bursaphelenchus xylophilus[J]. Scientia Silvae Sinicae, 2012,48(3): 88-94.
[16] CHUANG L, CHANG H, LIN M, et al. Chaotic particle swarm optimization for detecting SNP-SNP interactions for CXCL12-related genes in breast cancer prevention[J]. European Journal of Cancer Prevention, 2012, 21(4): 336-342. DOI:10.1097/CEJ.0b013e32834e31f6.
[17] LIU Y, LI M, CHEUNG Y M, et al. SKM-SNP: SNP markers detection method[J]. Journal of Biomedical Informatics, 2010, 43(2): 233-239. DOI:10.1016/j.jbi.2009.11.004.
[18] BASCIANO P A, MATAKAS J, PECCI A, et al. β-1 tubulin R307H SNP alters microtubule dynamics and affects severity of a hereditary thrombocytopenia[J]. Journal of Thrombosis and Haemostasis, 2015, 13(4): 651-659. DOI:10.1111/jth.12824.
[19] REN J, CHEN L, SUN D, et al. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors[J]. BMC Evolutionary Biology, 2013, 13(169):1-15. DOI:10.1186/1471-2148-13-169.
[20] REN J, SUN D, CHEN L, et al. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat[J]. International Journal of Molecular Sciences, 2013, 14(4): 7061-7088. DOI:10.3390/ijms14047061.
[21] BALOCH F S, ALSALEH A, SHAHID M Q, et al. A Whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent[J]. PloS One, 2017, 12(1). DOI:10.1371/journal.pone.0167821.
[22] LIU Z, LI J, FA X, et al. Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha[J]. Crop Journal, 2017, 5(4): 326-336. DOI:10.1016/j.cj.2016.11.001.
[23] AI X, LIANG Y, WANG J, et al. Genetic diversity and structure of elite cotton germplasm(Gossypium hirsutum L.)using genome-wide SNP data[J]. Genetica, 2017, 145(4-5): 409-416. DOI:10.1007/s10709-017-9976-8.
[24] INGHELANDT D V, MELCHINGER A E, LEBRETON C, et al. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers[J]. Theoretical & Applied Genetics, 2010, 120(7): 1289-1299. DOI:10.1007/s00122-009-1256-2.
[25] KIKUCHI T, COTTON J A, DALZELL J J, et al. Genomic insights into the origin of Parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J]. PloS Pathogens, 2011, 7(9): e1002219. DOI:10.1371/journal.ppat.1002219.
[26] FIGUEIREDO J, SIMOES M J, GOMES P, et al. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes[J]. PloS One, 2013, 8(12): e83542. DOI:10.1371/journal.pone.0083542.
[27] PEREIRA F, MOREIRA C, FONSECA L, et al. New insights into the phylogeny and worldwide dispersion of two closely related nematode species, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus[J]. PloS One, 2013, 8(2): e56288. DOI:10.1371/journal.pone.0056288.

Last Update: 2019-11-30