我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

杨树不同根序细根形态对酚酸的响应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年01期
Page:
39-46
Column:
研究论文
publishdate:
2020-01-15

Article Info:/Info

Title:
Root order-dependent responses of poplar fine root morphology to phenolic acids
Article ID:
1000-2006(2020)01-0039-08
Author(s):
DONG Yufeng1 ZHU Wanrui2 DING Changjun3 Huang Qinjun3 WANG Huatian2 LI Shanwen1 WANG Yanping2*
(1.Shandong Academy of Forestry, Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Jinan 250014, China; 2.College of Forestry, Shandong Agricultural University, Shandong Provincial Key Laboratory of Silviculture, Taian 271018, China; 3.Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China)
Keywords:
poplar fine root morphology fine root biomass anatomical trait root order phenolic acid
Classification number :
S718.5
DOI:
10.3969/j.issn.1000-2006.201807055
Document Code:
A
Abstract:
【Objective】 Forest productivity is closely related to fine root growth, and in this study, we simulated field concentrations of phenolic acids to examine the morphological responses of poplar seedling roots to phenolic acids. The objective was to provide in-depth insights into the rhizosphere effects of tree roots.【Method】 Using an improved Hoagland solution, we generated phenolic acid environments designed to reflect the contents of phenolic acids in the soils of a successive rotation poplar plantation. All roots of poplar seedlings were harvested and 50% of the fine roots(diameter < 2 mm)were sampled and grouped according to order. A WINRHIZO root system analyzer and associated software were used to determine the morphological traits, including root length and diameter, of each fine root order(orders 1-5). Permanent paraffin cross-sections of fine roots of each order were prepared to observe anatomical traits, such as cross-section diameter and vascular cylinder(stele)diameter. Finally, several important parameters related to fine root morphology, including specific root length(SRL), root tissue density(RTD), and the ratio of vascular cylinder to cross-section area were calculated. Origin Pro 8.0 software was employed for data analysis and MS Excel was used to analyze the relationship between root morphology and the cross-section structures of the different fine root orders. 【Result】 We found that poplar roots biomass(dry weight)was significantly reduced after phenolic acid treatment. Although the biomass of fine root orders 1 to 5 showed no significant difference between the control check(CK)and phenolic acid treatments, the ratio of fine roots to total roots was significantly higher in seedlings receiving phenolic acid treatment than that of CK seedlings. Phenolic acids inhibited the elongation growth of fine roots, with the lengths of fine root orders 1 to 3 being significantly reduced under phenolic acid treatment. Furthermore, seedlings treated with phenolic acids showed an increase in fine root diameter, whereas the surface areas of fine root orders 1 to 5 were smaller under phenolic acid treatment than that of CK seedlings. Phenolic acids also affected the SRL and RTD, with the former being reduced and the latter increased in response to treatment. The anatomical traits of poplar roots were significantly altered under phenolic acid treatment, and the ratios of vascular cylinder to cross-section diameter of the roots of each order were increased, thereby indicating significant changes in the transport tissues of fine roots. 【Conclusion】 Phenolic acids were found to have significant inhibitory effects on the fine root growth and development of poplar cuttings. The changes in fine root morphology revealed the variability in roots function under phenolic acid treatment, which would affect the absorptive function of fine roots and further inhibit the above-ground biomass growth of poplar. Furthermore, we characterized the strategies of tree root development and growth investment in response to phenolic acids with respect to differences in fine root morphology among different root orders

References


[1] BLOOMFIELD J, VOGT K A, WARGO P M. Tree root turnover and senescence[G]// WAISEL Y, ESHEL A, KAFKAFI U. Plant roots, the hidden half. 2nd ed. New York: Marcel Dekker Press, 1996, 363-381.
[2] NORBY R J, JACKSON R B. Root dynamics and global change: seeking an ecosystem perspective[J]. New Phytologist, 2000, 147(1): 3-12. DOI:10.1046/j.1469-8137.2000.00676.x.
[3] BLOCK R M A, VAN REES K C J, KNIGHT J D. A review of fine root dynamics in Populus plantations[J]. Agroforestry Systems, 2006, 67(1): 73-84. DOI:10.1007/s10457-005-2002-7.
[4] SCHENCK Z S M, JÖRGENSEN R G, MÜLLER T. Rhizodeposition:its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(5): 750-760. DOI:10.1002/jpln.201100300.
[5] FITTER A H, SELF G K, WOLFENDEN J, et al. Root production and mortality under elevated atmospheric carbon dioxide[J]. Plant and Soil, 1995, 187(2): 299-306. DOI:10.1007/bf00017095.
[6] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162(1): 9-24. DOI:10.1111/j.1469-8137.2004.01015.x.
[7] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1/2): 5-33. DOI:10.1007/s11104-009-9925-0.
[8] 孙悦, 徐兴良, KUZYAKOV Y. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报, 2014, 38(1): 62-75. SUN Y, XU X L, KUZYAKOV Y. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 62-75.DOI:10.3724/SP.J.1258.2018.00007.
[9] LI Z H, WANG Q, RUAN X, et al. Phenolics and plant allelopathy[J]. Molecules, 2010, 15(12): 8933-8952. DOI:10.3390/molecules15128933.
[10] ALONI R, ALONI E, LANGHANS M, et al. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism[J]. Annals of Botany, 2006, 97(5): 883-893. DOI:10.1093/aob/mcl027.
[11] OSMONT K S, SIBOUT R, HARDTKE C S. Hidden branches: developments in root system architecture[J]. Annual Review of Plant Biology, 2007, 58(1): 93-113. DOI:10.1146/annurev.arplant.58.032806.104006.
[12] 谭秀梅, 王华田, 孔令刚, 等. 杨树人工林连作土壤中酚酸积累规律及对土壤微生物的影响[J]. 山东大学学报(理学版), 2008, 43(1): 14-19. TAN X M, WANG H T, KONG L G, et al. Accumulation of phenolic acids in soil of a continuous cropping poplar plantation and their effects on soil microbes[J]. Journal of Shandong University(Natural Science), 2008, 43(1): 14-19.
[13] 王延平, 王华田, 许坛, 等. 酚酸对杨树人工林土壤养分有效性及酶活性的影响[J]. 应用生态学报, 2013, 24(3): 667-674. WANG Y P, WANG H T, XU T, et al. Effects of exogenous phenolic acid on soil nutrient availability and enzyme activities in a poplar plantation[J]. Chinese Journal of Applied Ecology, 2013, 24(3): 667-674.
[14] 许坛, 王华田, 王延平, 等. 杨树人工林土壤养分有效性变化及其与土壤细菌群落演变的相关性[J]. 应用与环境生物学报, 2014, 20(3): 491-498. XU T, WANG H T, WANG Y P, et al. Correlation between soil nutrient availability and bacteria community succession in poplar plantations[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(3): 491-
[23] RICE E L. Allelopathy[M].2nd ed. New York: Academic Press Inc, 1984: 267-290.
[24] 杨阳, 王华田, 王延平, 等. 外源酚酸对杨树幼苗根系生理和形态发育的影响[J]. 林业科学, 2010, 46(11): 73-80. YANG Y, WANG H T, WANG Y P, et al. Effects of exogenous phenolic acids on root physiologic characteristics and morphologic development of poplar hydroponic cuttings[J]. Scientia Silvae Sinicae, 2010, 46(11): 73-80.
[25] 刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945. LIU J, XIANG W H, XU X, et al. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 938-945. DOI:10.3773/j.issn.1005-264x.2010.08.006.
[26] HISHI T, TAKEDA H. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa[J]. New Phytologist, 2005, 167(2): 509-521.DOI:10.1111/j.1469-8137.2005.01418.x.
[27] HISHI T, TATENO R, TAKEDA H. Anatomical characteristics of individual roots within the fine-root architecture of Chamaecyparis obtusa(Sieb. & Zucc.)in organic and mineral soil layers[J]. Ecological Research, 2006, 21(5): 754-758. DOI:10.1007/s11284-006-0184-8.
[28] CHON S U, CHOI S K, JUNG S, et al. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass[J]. Crop Protection, 2002, 21(10): 1077-1082. DOI:10.1016/s0261-2194(02)00092-3.
[29] KAUR H, INDERJIT, KAUSHIK S. Cellular evidence of allelopathic interference of benzoic acid to mustard(Brassica juncea L.)seedling growth[J]. Plant Physiology and Biochemistry, 2005, 43(1): 77-81.DOI:10.1016/j.plaphy.2004.12.007.
[30] GATTI A B, FERREIRA A G, ARDUIN M, et al. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O.Kuntze on development of Sesamum indicum L. seedlings[J]. Acta Botanica Brasilica, 2010, 24(2): 454-461.DOI:10.1590/s0102-33062010000200016.
[31] 严小龙, 廖红, 年海.根系生物学: 原理与方法[M]. 北京: 科学出版社, 2007. YAN X L, LIAO H, NIAN H. Root biology: principles and methods[M]. Beijing: Science Press,2007.
[32] FUKAKI H, OKUSHIMA Y, TASAKA M. Auxin-Mediated lateral root formation in higher plants[C]//FUKAKI H, OKUSHIMA Y, TASAKA M.International Review of Cytology. Elsevier, 2007: 111-137. DOI:10.1016/s0074-7696(07)56004-3.
[33] CASIMIRO I, BEECKMAN T, GRAHAM N, et al. Dissecting Arabidopsis lateral root development[J]. Trends in Plant Science, 2003, 8: 165-171.DOI: 10.1016/S1360-1385(03)00051-7.498.
[15] 王华田, 王延平. 关于连作人工林衰退机理几个热点问题的探讨[J]. 山东大学学报(理学版), 2013, 48(7): 1-8. WANG H T, WANG Y P. Hotspot discussion on decline mechanism of replanted plantation[J]. Journal of Shandong University(Natural Science), 2013, 48(7): 1-8.
[16] VALENZUELA-ESTRADA L R, VERA-CARABALLO V, RUTH L E, et al. Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum(Ericaceae)[J]. American Journal of Botany, 2008, 95(12): 1506-1514. DOI:10.3732/ajb.0800092.
[17] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north american trees[J]. Ecological Monographs, 2002, 72(2): 293. DOI:10.2307/3100029.
[18] BLUM U, DALTON B R. Effects of ferulic acid, an allelopathic compound, on leaf expansion of cucumber seedlings grown in nutrient culture[J]. Journal of Chemical Ecology, 1985, 11(3): 279-301.DOI:10.1007/bf01411415.
[19] BLUM U, REBBECK J. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture[J]. Journal of Chemical Ecology, 1989, 15(3): 917-928. DOI:10.1007/bf01015187.
[20] LEHMAN M E, BLUM U, GERIG T M. Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments[J]. Journal of Chemical Ecology, 1994, 20(7): 1773-1782. DOI:10.1007/bf02059898.
[21] 孔垂华. 植物化感作用研究中应注意的问题[J]. 应用生态学报, 1998, 9(3): 332-336. KONG C H. Problems needed attention on plant allelopathy research[J]. Chinese Journal of Applied Ecology, 1998, 9(3): 332-336. DOI:10.13287/j.1001-9332.1998.0072.
[22] BLUM U, SHAFER S R, LEHMAN M E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model[J]. Critical Reviews in Plant Sciences, 1999, 18(5): 673-693. DOI:10.1080/07352689991309441.

Last Update: 2020-01-15