我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

光照对农林植物生长影响及人工补光技术研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年01期
Page:
215-222
Column:
综合述评
publishdate:
2020-01-15

Article Info:/Info

Title:
Recent progress of artificial lighting technique and effect of light on plant growth
Article ID:
1000-2006(2020)01-0215-08
Author(s):
WANG Jianping1 WANG Jizhang1 ZHOU Jing1 HE Tong1 LI Pingping12*
(1.Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University, Zhenjiang 212013, China; 2.College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China)
Keywords:
plant growth light intensity photoperiod lighting technology blue-red lighting
Classification number :
S728
DOI:
10.3969/j.issn.1000-2006.201806033
Document Code:
A
Abstract:
Light is the most significant factor in the regulation of plant growth. With the widespread use of lighting technique in plant flow line production and nursery stock production, the effects of plant lighting and the use of artificial lighting technique for promoting plant growth have been studied constantly and gradually. Accordingly, the present article reviews the effects of light(e.g., intensity, quality and photoperiod)on plants. Light intensity, for example, affects the photosynthetic and growth rates of plants, whereas light quality affects seed germination, morphogenesis, and photosynthesis, and photoperiod affects morphogenesis and photosynthesis. The article also reviews recent progress in artificial lighting methods and strategies, such as the reduction of light waste and the development of dynamic lighting that promotes plant growth, and current trends in the development of lighting technique. That is to take light source, mechanism of light, and multi-factor influence to plant as research focus

References


[1] 陈育明, 陈大华. 节能照明光源新进展[M]. 合肥:安徽科学技术出版社, 2016.
[2] BERKOVICH Y A, KONOVALOVA I O, SMOLYANINA S O, et al. LED crop illumination inside space greenhouses[J]. Reach, 2017, 6: 11-24. DOI:10.1016/j.reach.2017.06.001.
[3] 熊宇, 杨再强, 薛晓萍, 等. 遮光处理对温室黄瓜幼龄植株叶片光合参数的影响[J]. 中国农业气象, 2016, 37(2):222-230. XIONG Y, YANG Z Q, XUE X P, et al. Effect of shading on photosynthetic parameters in greenhouse cucumber leaves[J]. Chinese Journal of Agrometeorology.2016, 37(2):222-230. DOI:10.3969/j.issn.1000-6362.2016.02.012.
[4] 郭泳, 李天来, 黄广学, 等. 环境因素对番茄单叶净光合速率的影响[J]. 沈阳农业大学学报, 1998, 29(2): 127-131. GUO Y, LI T L, HUANG G X, et al. Effect of environment factors on the net photosynthesis rate of tomato leaf blade[J]. Journal of Shenyang Agricultural University, 1998, 29(2): 127-131.
[5] 吴雪霞, 陈建林, 查丁石, 等. 低温胁迫对茄子幼苗叶片光合特性的影响[J]. 华北农学报, 2008, 23(5): 185-189. WU X X, CHEN J L, ZHA D S, et al. Effects of low temperature stress on photosynthetic characteristics in leaves of eggplant seedlings[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(5): 185-189.
[6] 张志刚 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性[J]. 中国农业科学, 2010, 43(1):123-131. ZHANG Z G. SHANG Q M. Photosynthetic characteristics of pepper leaves under low temperature,weak light and salt stress[J]. Scientia Agricultura Sinica, 2010, 43(1):123-131.DOI:10.3864/j.issn.0578-1752.2010.01.015.
[7] 蒋欣梅, 刘在民, 于锡宏. 补光强度对冬季温室辣椒生长及光合特性的影响[C]//厦门:中国园艺学会学术年会, 2015.
[8] 由泉, 董然, 于锡宏, 等. 不同补光强度对冬季温室茄子生长的影响[J]. 蔬菜, 2015(10): 21-23. YOU Q, DONG R, YU X H, et al. Effects of different supplementary lighting intensities on growth of eggplant in winter greenhouse[J]. Journal of Changjiang Vegetables, 2015(10): 21-23. DOI:10.3865/j.issn.1001-3547.2015.10.008.
[9] 李萍萍, 胡永光, 赵玉国, 等. 叶用莴苣温室栽培单株光合作用日变化规律[J]. 园艺学报, 2001, 28(3): 240-245. LI P P, HU Y G, ZHAO Y G, et al. A study on daily variation of photosynthesis in greenhouse butterhead lettuce[J]. Acta Houticulturae Sinica, 2001, 28(3): 240-245. DOI:10.3321/j.issn:0513-353X.2001.03.010.
[10] FU W G, LI P P, WU Y Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce[J]. Scientia Horticulturae, 2012, 135: 45-51. DOI:10.1016/j.scienta.2011.12.004.
[11] 刘欣欣, 张明如, 温国胜, 等. 浙江省常见15个树种的光合特性[J]. 浙江农林大学学报, 2012, 29(2): 173-179. LIU X X, ZHANG M R, WEN G S, et al. Photosynthetic characteristics for fifteen potted seedlings common to Zhejiang Province[J]. Journal of Zhejiang Forestry College, 2012, 29(2): 173-179. DOI:10.3969/j.issn.2095-0756.2012.02.004.
[12] WU Q Q, LIU Y, FANG S Z, et al. Photosynthetic response of poplar leaves at different developmental phases to environmental factors[J]. Journal of Forestry Research, 2017, 28(5): 909-915. DOI:10.1007/s11676-016-0358-3.
[13] 陈月华, 廖建华, 覃事妮, 等. 长沙地区19种园林植物光合特性及固碳释氧测定[J]. 中南林业科技大学学报, 2012, 32(10): 116-120. CHEN Y H, LIAO J H, QIN S N, et al. Studies on photosynthetic characteristics and carbon fixation and oxygen release capabilities of 19 garden plants in Changsha area[J]. Journal of Central South University of Forestry & Technology, 2012, 32(10): 116-120.
[14] 李冬林, 向其柏. 光照条件对浙江楠幼苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2004, 28(5): 27-31. LI D L, XIANG Q B. Effects of light condition on the growth and photosynthetic characters of Phoebe chekiangensis seedings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2004, 28(5): 27-31. DOI:10.3969/j.issn.1000-2006.2004.05.007.
[15] 葛永金, 刘跃钧, 高伟, 等. 不同光照强度下楠木属3个树种苗木的形态响应与适应[J]. 江西农业大学学报, 2014, 36(1): 109-114. GE Y J, LIU Y J, GAO W, et al. Morphological responses and adaptation of seedlings of three tree species of Phoebe nees to different light regimes[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1): 109-114. DOI:10.3969/j.issn.1000-2286.2014.01.017.
[16] 张放, 胡万良, 孔祥文. 红皮云杉幼树不同光环境下生理生态特征研究[J]. 辽宁林业科技, 2003(5): 1-4,34.ZHANG F, HU W L, KONG X W. Preliminary study on major eco-physiological characteristics of spruce seedlings under different light environment[J]. Liaoning Forestry Science and Technology, 2003(5): 1-4,34. DOI:10.3969/j.issn.1001-1714.2003.05.001.
[17] 张效平. 光照强度对唐菖蒲花芽发育的影响[J]. 南京农业大学学报, 1990, 13(4): 35-38.ZHANG X P. Effect of light intensities on development of flower-bud of gladiolus[J]. Journal of Nanjing Agricultural University, 1990, 13(4): 35-38.
[18] SMITH H. Light quality, photoperception, and plant strategy[J]. Annual Review of Plant Physiology, 1982, 33(1): 481-518. DOI:10.1146/annurev.pp.33.060182.002405.
[19] LI Q, KUBOTA C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce[J]. Environmental and Experimental Botany, 2009, 67(1): 59-64. DOI:10.1016/j.envexpbot.2009.06.011.
[20] SHIN K S, MURTHY H N, HEO J W, et al. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants[J]. Acta Physiologiae Plantarum, 2008, 30(3): 339-343. DOI:10.1007/s11738-007-0128-0.
[21] 欧阳芳群, 蒋明, 王军辉, 等. 补光对欧洲云杉苗木生长的生理影响研究[J]. 北京林业大学学报, 2016, 38(1): 50-58. OUYANG F Q, JIANG M, WANG J H, et al. Effects of supplemental lighting on growth and physiological responses of Norway spruce(Picea abies(L.)H.Karst)from different provenances[J]. Journal of Beijing Forestry University, 2016, 38(1): 50-58. DOI:10.13332/j.1000-1522.20150009.
[22] LIN K H, HUANG M Y, HUANG W D, et al. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce(Lactuca sativa L. var. capitata)[J]. Scientia Horticulturae, 2013, 150: 86-91. DOI:10.1016/j.scienta.2012.10.002.
[23] 周成波, 张旭, 刘彬彬, 等. 补光光质对叶用莴苣光合特性的影响[J]. 植物生理学报, 2015, 51(12): 2255-2262. ZHOU C B, ZHANG X, LIU B B, et al. The effect of supplementary light quality on physiological characteristics of lettuce[J]. Plant Physiology Journal, 2015, 51(12): 2255-2262. DOI:10.13592/j.cnki.ppj.2015.0507.
[24] POULET L, MASSA G D, MORROW R C, et al. Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation[J]. Life Sciences in Space Research, 2014, 2: 43-53. DOI:10.1016/j.lssr.2014.06.002.
[25] JISHI T, KIMURA K, MATSUDA R, et al. Effects of temporally shifted irradiation of blue and red LED light on cos lettuce growth and morphology[J]. Scientia Horticulturae, 2016, 198: 227-232. DOI:10.1016/j.scienta.2015.12.005.
[26] HERNÁNDEZ R, KUBOTA C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs[J]. Environmental and Experimental Botany, 2016, 121: 66-74. DOI:10.1016/j.envexpbot.2015.04.001.
[27] 韦秋梅, 龙波, 张海东, 等. 不同光质LED对观光木苗木根系的影响[J]. 绿色科技, 2017(15): 121-124. DOI:10.16663/j.cnki.lskj.2017.15.048.
[28] 王自布, 杨维, 陈建, 等. 光质对白芨组培苗生理特性及酶基因表达的影响[J]. 热带亚热带植物学报, 2016, 24(6): 665-670. WANG Z B, YANG W, CHEN J, et al. Effect of light quality on physiological characteristics and expression of antioxidant enzyme genes in Bletilla striata L. in vitro[J]. Journal of Tropical and Subtropical Botany, 2016, 24(6): 665-670. DOI:10.11926/j.issn.1005-3395.2016.06.010.
[29] 杨海裕, 贠慧玲. 补充光照对欧洲云杉苗木生长的影响[J]. 甘肃林业科技, 2006, 31(1): 26-28. YANG H Y, YUN H L. Impact of supplementary illumination on growth of Picea abies[J].Journal of Gansu Forestry Science and Technology, 2006, 31(1): 26-28. DOI:10.3969/j.issn.1006-0960.2006.01.008.
[30] 欧阳芳群. 不同云杉种及种源补光育苗技术研究[D].北京: 北京林业大学, 2008.OUYANG F Q. Techniques of supplemental light seedling of different species and provenances of Picea asperata[D]. Beijing: Beijing Forestry University, 2008.
[31] 沈红香, 沈漫, 程继鸿, 等. 不同光质补光处理对郁金香生长和开花的影响[J]. 北京农学院学报, 2007, 22(1): 16-18. SHEN H X, SHEN M, CHENG J H, et al. Effect of supplemental lighting with different light quality on growth and bloom of tulip[J]. Journal of Beijing University of Agriculture, 2007, 22(1): 16-18. DOI:10.3969/j.issn.1002-3186.2007.01.005.
[32] 谢以萍, 杨再强, 苏天星, 等. 不同光质对瓜叶菊生长发育的影响[J]. 北方园艺, 2010(3): 53-56.XIE Y P, YANG Z Q, SU T X, et al. Effect of light quality on the development and growth of Senecio cruentus DC[J]. Northern Horticulture, 2010(3): 53-56.
[33] PARK Y, RUNKLE E S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation[J]. Environmental and Experimental Botany, 2017, 136: 41-49. DOI:10.1016/j.envexpbot.2016.12.013.
[34] DEMOTES-MAINARD S, PÉRON T, COROT A, et al. Plant responses to red and far-red lights, applications in horticulture[J]. Environmental and Experimental Botany, 2016, 121: 4-21. DOI:10.1016/j.envexpbot.2015.05.010.
[35] DIERCK R, DHOOGHE E, HUYLENBROECK J, et al. Light quality regulates plant architecture in different genotypes of Chrysanthemum morifolium Ramat[J]. Scientia horticulturae, 2017, 218: 177-186. DOI:10.1016/j.scienta.2017.02.016
[36] HUCHÉ-THÉLIER L, CRESPEL L, GOURRIEREC J L, et al. Light signaling and plant responses to blue and UV radiations: perspectives for applications in horticulture[J]. Environmental and Experimental Botany, 2016, 121: 22-38. DOI:10.1016/j.envexpbot.2015.06.009.
[37] DEMERS D A, DORAIS M, WIEN C H, et al. Effects of supplemental light duration on greenhouse tomato(Lycopersicon esculentum Mill.)plants and fruit yields[J]. Scientia Horticulturae, 1998, 74(4): 295-306. DOI:10.1016/s0304-4238(98)00097-1.
[38] SINGH R K, SVYSTUN T, ALDAHMASH B, et al. Photoperiod-and temperature-mediated control of phenology in trees-a molecular perspective[J]. New Phytologist, 2017, 213(2): 511-524. DOI:10.1111/nph.14346.
[39] 张华丽, 张金凤, 王军辉, 等. 针叶树补光育苗技术研究进展[J]. 西北林学院学报, 2005, 20(1): 107-111. ZHANG H L, ZHANG J F, WANG J H, et al. Advances in technology of growing seedlings by supplemental lighting in conifers[J]. Journal of Northwest Forestry University, 2005, 20(1): 107-111. DOI:10.3969/j.issn.1001-7461.2005.01.028.
[40] 杨燕萍, 杨亚萍. 濒危植物秦岭冷杉补光育苗技术研究[J]. 中国野生植物资源, 2012, 31(4): 76-77. YANG Y P, YANG Y P. Study on the supplemental lighting system of endangered plant Abies chensiensis[J]. Chinese Wild Plant Resources, 2012, 31(4): 76-77. DOI:10.3969/j.issn.1006-9690.2012.04.020.
[41] 张宋智, 王军辉, 蒋明, 等. 欧洲云杉不同种源补光育苗试验[J]. 西北林学院学报, 2009, 24(3): 75-79. ZHANG S Z, WANG J H, JIANG M, et al. Seedling culture of Picea abies by supplement light[J]. Journal of Northwest Forestry University, 2009, 24(3): 75-79.
[42] 赵文英, 蒋明, 许娜, 等. 7个云杉树种1年生苗对补光的响应[J]. 甘肃林业科技, 2011, 36(1): 25-27,39. ZHAO W Y, JIANG M, XU N, et al. Response of supplemental lighting on 1 year old seedling of 7 species of Picea asperata[J]. Journal of Gansu Forestry Science and Technology, 2011, 36(1): 25-27,39. DOI:10.3969/j.issn.1006-0960.2011.01.006.
[43] 王梓, 赵燕, 魏红旭, 等. 补光和寡糖添加处理对罗汉松苗木生长的影响[J]. 西北林学院学报, 2016, 31(6): 157-161,174. WANG Z, ZHAO Y, WEI H X, et al. Effects of oligosaccharide addition and extension of photoperiod on spring growth of buddhist pine seedlings[J]. Journal of Northwest Forestry University, 2016, 31(6): 157-161,174. DOI:10.3969/j.issn.1001-7461.2016.06.27.
[44] 欧阳芳群, 张守攻, 王军辉, 等. 补光处理对黑云杉不同种源苗木生长的影响[J]. 北京林业大学学报, 2010, 32(5): 82-87. OUYANG F Q, ZHANG S G, WANG J H, et al. Effects of supplemental lighting treatments on seedling growth of varied provenances in black spruce[J]. Journal of Beijing Forestry University, 2010, 32(5): 82-87.
[45] SONG Y H, ITO S, IMAIZUMI T. Flowering time regulation: photoperiod-and temperature-sensing in leaves[J]. Trends in Plant Science, 2013, 18(10): 575-583. DOI:10.1016/j.tplants.2013.05.003.
[46] MANGON H. Production de la matière verte des feuilles sous l’influence de la lumière électrique[J]. Compt Rend Acad Sci Paris, 1861, 53: 243-244.
[47] 崔瑾, 徐志刚, 邸秀茹, 等. LED在植物设施栽培中的应用和前景[J]. 农业工程学报, 2008, 24(8): 249-253. CUI J, XU Z G, DI X R, et al. Applications and prospects of light emitting diode in plant protected culture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 249-253. DOI:10.3321/j.issn:1002-6819.2008.08.055.
[48] BICKFORD E D, DUNN S. Lighting for plant growth[M]. Ohio: The Kent State Univ Press, 1972.
[49] 赵静, 周增产, 卜云龙, 等. 植物工厂自动立体栽培系统研发[J]. 农业工程, 2018, 8(1): 18-21.ZHAO J, ZHOU Z C, BU Y L, et al. Research and derelopment of automatic transmission system of stereo cultivation bed[J]. Agricultural Engineering, 2018, 8(1): 18-21.
[50] 吴乐天, 张彩虹, 王瑞, 等. 电动可调型补光系统的研制与应用[J]. 新疆农机化, 2015(3): 29-31. DOI:10.13620/j.cnki.issn1007-7782.2015.03.013.
[51] PINHO P, HYTÖNEN T, RANTANEN M, et al. Dynamic control of supplemental lighting intensity in a greenhouse environment[J]. Lighting Research & Technology, 2013, 45(3): 295-304. DOI:10.1177/1477153512444064.
[52] 张海辉, 杨青, 胡瑾, 等. 可控LED亮度的植物自适应精准补光系统[J]. 农业工程学报, 2011, 27(9): 153-158. ZHANG H H, YANG Q, HU J, et al. Self-adaptive and precise supplementary lighting system for plant with controllable LED intensity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 153-158. DOI:10.3969/j.issn.1002-6819.2011.09.027.
[53] IERSEL M W, GIANINO D. An adaptive control approach for light-emitting diode lights can reduce the energy costs of supplemental lighting in greenhouses[J]. HortScience, 2017, 52(1): 72-77. DOI:10.21273/hortsci11385-16.
[54] 胡瑾. 基于作物光合需求的设施光环境调控方法与技术研究[D]. 杨凌: 西北农林科技大学, 2016. HU J. Research on method and technology of light environment control of facility based on crop photosynthetic demand[D]. Yangling: Northwest A & F University, 2016.
[55] MAXWELL K, JOHNSON G N. Chlorophyll fluorescence: a practical guide[J]. Journal of Experimental Botany, 2000, 51(345): 659-668. DOI:10.1093/jxb/51.345.659.
[56] 纪建伟, 解飞, HARBINSON J. LED激发光源叶绿素荧光参数在线监控系统[J]. 农业工程学报, 2009, 25(4): 145-149. JI J W, XIE F. Online monitoring system for chlorophyll fluorescence parameters using LED excitation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(4): 145-149.
[57] 李峰, 李征明, 李连凯, 等. 基于MINIPAM的番茄生长补光控制系统的软件设计[J]. 沈阳农业大学学报, 2012, 43(2): 211-215. LI F, LI Z M, LI L K, et al. Software design of supplemental lighting control system for tomato growth based on MINIPAM[J]. Journal of Shenyang Agricultural University, 2012, 43(2): 211-215. DOI:10.3969/j.issn.1000-1700.2012.02.016.
[58] IERSEL M W, WEAVER G, MARTIN M T, et al. A chlorophyll fluorescence-based biofeedback system to control photosynthetic lighting in controlled environment agriculture[J]. Journal of the American Society for Horticultural Science, 2016, 141(2):169-176. DOI:10.21273/jashs.141.2.169.
[59] ILIC Z S, FALLIK E. Light quality manipulation improves vegetable quality at harvest and postharvest: a review[J]. Environmental and Experimental Botany, 2017, 139: 79-90. DOI:10.1016/j.envexpbot.2017.04.006.
[60] 王峰, 李抒智, 张群力, 等. 花卉生产中花期调节补光灯配光方案设计研究[J]. 安徽农业科学, 2013, 41(11): 1629-1631. WANG F, LI S Z, ZHANG Q L, et al. The light-shaped design research of lamp for adjusting the florescence of flower[J]. Journal of Anhui Agricultural Sciences, 2013, 41(11): 1629-1631.
[61] XU Y C, CHANG Y X, CHEN G Y, et al. The research on LED supplementary lighting system for plants[J]. Optik, 2016, 127(18): 7193-7201. DOI:10.1016/j.ijleo.2016.05.056.
[62] 周益民, 周国泉, 徐一清, 等. 基于单片机的温室植物LED补光系统设计[J]. 激光生物学报, 2013, 22(3): 214-219. ZHOU Y M, ZHOU G Q, XU Y Q, et al. A design of led light system used for greenhouse plants based on MCU[J]. Acta Laser Biology Sinica, 2013, 22(3): 214-219. DOI:10.3969/j.issn.1007-7146.2013.03.004.
[63] LI M, TIAN L G, CHEN Z L, et al. A kind of imitated environment system for plant growth based on LED light source[C]//Taiyuan, China: 2012 24th Chinese Control and Decision Conference(CCDC), 652-655. DOI:10.1109/CCDC.2012.6242981.
[64] 刘彤, 刘雯, 马建设, 等. 可调红蓝光子比例的LED植物光源配光设计方法[J]. 农业工程学报, 2014, 30(1): 154-159. LIU T, LIU W, MA J S, et al. Distribution design method for LED plant light source with tunable ratio of red/blue photons[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 154-159. DOI:10.3969/j.issn.1002-6819.2014.01.020.
[65] 刘晓英, 徐志刚, 焦学磊, 等. 可调LED光源系统设计及其对菠菜生长的影响[J]. 农业工程学报, 2012, 28(1): 208-212. LIU X Y, XU Z G, JIAO X L, et al. Design on LED flexible light system and its effect on growth of spinach[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(1): 208-212. DOI:10.3969/j.issn.1002-6819.2012.01.037.
[66] AHLMAN L, BÅNKESTAD D, WIK T. Using chlorophyll a fluorescence gains to optimize LED light spectrum for short term photosynthesis[J]. Computers and Electronics in Agriculture, 2017, 142: 224-234. DOI:10.1016/j.compag.2017.07.023.
[67] YANO A. Energy balance and energy conversion process of LEDs and LED lighting systems[C]//LED Lighting for Urban Agriculture. Singapore: Springer Singapore, 2016: 417-427. DOI:10.1007/978-981-10-1848-0_30.
[68] MASSA G D, KIM H H, WHEELER R M, et al. Plant productivity in response to LED lighting[J]. HortScience, 2008, 43(7): 1951-1956. DOI:10.21273/hortsci.43.7.1951.
[69] 孙爽. 植物工厂中光照效率提升途径简述[J]. 中国照明电器, 2016,(12): 40-46. SUN S. Methods of improving lighting efficiency in plant factory with artificial light[J]. China Light & Lighting, 2016,(12): 40-46. DOI:10.3969/j.issn.1002-6150.2016.12.010.
[70] FERENTINOS K P, ALBRIGHT L D. Optimal design of plant lighting system by genetic algorithms[J]. Engineering Applications of Artificial Intelligence, 2005, 18(4): 473-484. DOI:10.1016/j.engappai.2004.11.005.
[71] IBARAKI Y, SHIGEMOTO C. Estimation of supplemental lighting efficiency based on PPFD distribution on the canopy surface[J]. Journal of Agricultural Meteorology, 2013, 69(2): 47-54. DOI:10.2480/agrmet.69.2.1.
[72] HOVI-PEKKANEN T, TAHVONEN R. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber[J]. Scientia Horticulturae, 2008, 116(2): 152-161. DOI:10.1016/j.scienta.2007.11.010.
[73] SONG Y, JIANG C Y, GAO L H. Polychromatic supplemental lighting from underneath canopy is more effective to enhance tomato plant development by improving leaf photosynthesis and stomatal regulation[J]. Frontiers in Plant Science, 2016, 7: 1832. DOI:10.3389/fpls.2016.01832.
[74] LI K, LI Z P, YANG Q C. Improving light distribution by zoom lens for electricity savings in a plant factory with light-emitting diodes[J]. Frontiers in Plant Science, 2016, 7: 92. DOI:10.3389/fpls.2016.00092.
[75] KJAER K H, OTTOSEN C-O, JORGENSEN B N. Cost-efficient light control for production of two campanula species[J]. Scientia horticulturae, 2011, 129(4): 825-831.DOI:10.1016/j.scienta.2011.05.003.

Last Update: 2020-01-15