我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

盐胁迫下三倍体小黑杨杂种无性系叶片蛋白质差异表达分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年02期
Page:
59-66
Column:
研究论文
publishdate:
2020-03-31

Article Info:/Info

Title:
Analysis of differentially expressed proteins in leaves of triploid Populus simonii × P. nigra hybrid clones under salt stress
Article ID:
1000-2006(2020)02-0059-08
Author(s):
ZHANG Heng LIU Xiaoting CHEN Song ZHOU Xueyan SI Dongjing LI Ying ZHAO Xiyang*
(State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China)
Keywords:
triploid Populus simonii × P. nigra salt stress differential protein two-dimensional electrophoresis MALDI-TOF/TOF mass spectromety
Classification number :
S792.11
DOI:
10.3969/j.issn.1000-2006. 201904027.
Document Code:
A
Abstract:
【Objective】 Polyploid breeding has widely been used in the genetic improvement of different tree species because of the rapid and extensive growth of polyploid plants. There are many studies describing polyploidy in Populus hybrids, but most of them focused on growth traits, wood properties and stress tolerance, and few studied their growth and development mechanisms. In this study, the salt tolerance mechanisms of polyploid were deeply studied through proteomics analysis, and their metabolic regulation mechanisms were revealed, which could provide a theoretical reference for their high yield breeding. We studied salt tolerance mechanisms of triploid Populus hybrids, which was of great significance for improving salt-tolerance of P. simonii × P. nigra. 【Method】 In this study, we used triploid P. simonii × P. nigra hybrid clones which were treated with 75 mmol/L NaCl solution for 0, 4, 8, 12 and 16 days, and we analyzed the differentially expressed proteins from leaves by two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry under salt stress in different treatment conditions. 【Result】 More than 4 000 protein spots were detected in this study. There were 96 protein spots showing different expression patterns after the treatment. We identified 5, 21, 36 and 34 differentially expressed protein spots under salt stress on the 4th, 8th, 12th and 16th day, respectively, compared with the control group. The up-regulated proteins were 1, 7, 17 and 9, respectively, while the rest were down-regulated proteins. Sixty proteins were successfully identified by mass spectrometry. These proteins could be divided into eight categories according to their functions, and 15 photosynthesis-related proteins, including phosphoribulokinase and photosystem Ⅱ oxygen-evolving complex protein two precursor, accounted for 25% of the total protein content. There were 12 energy metabolism-related proteins, including triosephosphate isomerase and fructose-bisphosphate aldolase 1, which accounted for 20% of the total protein content. SOD, glyoxalase I homolog family protein, and seven other redox-related proteins accounted for 12% of the total protein content. H+-transporting two-sector ATPase family of proteins and five other resistant proteins accounted for 8% of the total protein content. Four biosynthesis and metabolism proteins, including S-adenosylmethionine synthase 3, accounted for 7% of the total protein content. Two transport proteins accounted for 3% of the total protein content, one belonging to the MD-2-related lipid recognition domain-containing family of proteins, and the other being a temperature-induced lipocalin. The signal transduction protein only contained thylakoid lumeinal 29 ku protein and accounted for 2% of the total protein content, and 14 unknown proteins accounted for 23% of the total protein content. 【Conclusion】 Under salt stress, multiple proteins(mainly photosynthesis and energy metabolism related proteins)were co-involved in the response to salt stress. This study can provide a basis for future studies of tree proteomics under salt stress

References


[1] ZHENG T C, ZANG L N, DAI L J, et al. Two novel eukaryotic translation initiation factor 5A genes from Populus simonii × P. nigra confer tolerance to abiotic stresses in Saccharomyces cerevisiae[J]. Journal of Forestry Research, 2017, 28(3): 453-463. DOI: 10.1007/s11676-016-0266-6.
[2] 孙琦, 曲春浦, 郑美珠, 等. 小黑杨FLC基因的克隆及功能解析[J]. 植物研究, 2015, 35(3): 363-369,377. SUN Q, QU C P, ZHENG M Z, et al. Isolation and functional analysis of FLC gene from poplar(Populus simonii × P. nigra)[J]. Bulletin of Botanical Research, 2015, 35(3): 363-369,377. DOI: 10.7525/j.issn.1673-5102.2015.03.007.
[3] 刘殿昆, 刘梦然, 李志新, 等. 转TaLEA基因小黑杨无性系生长性状变异研究[J]. 植物研究, 2015, 35(4): 540-546. LIU D K, LIU M R, LI Z X, et al. Variation analysis of growth traits of transgenic Populus simonii×P. nigra clones carrying TaLEA gene[J]. Bulletin of Botanical Research, 2015, 35(4): 540-546. DOI: 10.7525/j.issn.1673-5102.2015.04.011.
[4] 金微微, 张会慧, 李鑫, 等. 小黑杨和桑树叶片光合特性对不同氮素形态的响应[J]. 中南林业科技大学学报, 2018, 38(5): 98-103. JIN W W, ZHANG H H, LI X, et al. Responses of photosynthetic characteristics in leaves of Populus simonii×P. nigra and Morus alba to nitrogen forms[J]. Journal of Central South University of Forestry & Technology, 2018, 38(5): 98-103. DOI: 10.14067/j.cnki.1673-923x.2018.05.016.
[5] YAO W J, WANG S J, ZHOU B R, et al. Characterization of ERF76 promoter cloned from Populus simonii × P. nigra[J]. Acta Physiologiae Plantarum, 2017, 39(11): 249. DOI: 10.1007/s11738-017-2539-x.
[6] WANG S J, WANG J Y, YAO W J, et al. Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to salinity stress revealed by quantitative real-time PCR and RNA sequencing[J]. Plant Cell Reports, 2014, 33(10): 1687-1696. DOI: 10.1007/s00299-014-1647-y.
[7] 张力杰, 张凯旋, 魏志刚. 小黑杨PnsGA20ox1基因的克隆及功能分析[J]. 南京林业大学学报(自然科学版), 2013, 37(6): 11-16. ZHANG L J, ZHANG K X, WEI Z G. Cloning and function analysis of PnsGA20ox1 gene in Populus simonii × P. nigra[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(6): 11-16. DOI: 10.3969/j.issn.1000-2006.2013.06.003.
[8] 费希同, 唐军荣, 周军, 等. 中国杨树多倍体诱导研究现状[J]. 湖北农业科学, 2014, 53(18): 4252-4256. FEI X T, TANG J R, ZHOU J, et al. Research status of polyploid induction on poplar in China[J]. Hubei Agricultural Sciences, 2014, 53(18): 4252-4256. DOI: 10.14088/j.cnki.issn0439-8114.2014.18.046.
[9] 赵奉彬, 尚策, 张莉梅, 等. 11种杨属植物的倍性鉴定及山杨天然三倍体的发现[J].东北林业大学学报, 2016, 44(6): 23-27. ZHAO F B, SHANG C, ZHANG L M, et al. Ploidy testing of 11 poplar species and discovery of natural triploid Populus davidiana Dode[J]. Journal of Northeast Forestry University, 2016, 44(6): 23-27. DOI: 10.13759/j.cnki.dlxb.20160510.015.
[10] 周余华, 梁有旺, 彭方仁. 低温胁迫下克恩氏冬青幼苗叶片差异蛋白质分析[J]. 南京林业大学学报(自然科学版), 2017, 41(6): 187-192. ZHOU Y H, LIANG Y W, PENG F R. Proteomic analysis of Ilex seedling leaf response to low temperature[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(6): 187-192. DOI: 10.3969/j.issn.1000-2006.201703027.
[11] 严冬, 刘殿昆, 司冬晶, 等. 适用于双向电泳的杨树叶片蛋白质提取方法的研究[J]. 植物研究, 2016, 36(3): 469-475. YAN D, LIU D K, SI D J, et al. Optional protein extracting methods of poplar leaves for two-dimensional gel electrophoresis[J]. Bulletin of Botanical Research, 2016, 36(3): 469-475. DOI: 10.7525/j.issn.1673-5102.2016.03.022.
[12] 王康君, 樊继伟, 陈凤, 等. 植物对盐胁迫的响应及耐盐调控的研究进展[J]. 江西农业学报, 2018, 30(12): 31-40. WANG K J, FAN J W, CHEN F, et al. Research advances in response of plants to salt stress and regulation of salinity tolerance[J]. Acta Agriculturae Jiangxi, 2018, 30(12): 31-40. DOI: 10.19386/j.cnki.jxnyxb.2018.12.07.
[13] 朱倩. 利用蓝色温和电泳分析盐胁迫下水稻根尖质膜蛋白质组[D]. 南京: 南京农业大学, 2009. ZHU Q. Proteomic research of rice root tip plasma membrane under salt stress with BN/SDS-page[D]. Nanjing: Nanjing Agricultural University, 2009.
[14] 曹凡, 彭方仁, 梁有旺, 等. 美国山核桃不定根形成过程中相关蛋白质的鉴定及功能分析[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 53-58. CAO F, PENG F R, LIANG Y W, et al. Identification and function prediction of proteins during the adventitious rooting of pecan hardwood cuttings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 53-58. DOI: 10.3969/j.issn.1000-2006.2016.02.009.
[15] 安飞飞, 李庚虎, 陈霆, 等. 低温胁迫对木薯叶片叶绿素荧光参数及PSⅡ相关蛋白表达水平的影响[J]. 湖南农业大学学报(自然科学版), 2014, 40(2): 148-152. AN F F, LI G H, CHEN T, et al. Influence of low temperature stress on chlorophyll fluorescence parameters and expression levels of proteins in PSⅡof cassava[J]. Journal of Hunan Agricultural University(Natural Sciences), 2014, 40(2): 148-152. DOI: 10.13331/j.cnki.jhau.2014.02.008.
[16] 邓林, 陈少良. ATPase与植物抗盐性[J]. 植物学通报, 2005, 40(S1): 11-21. DENG L, CHEN S L. ATPase and salt resistance in plants[J]. Chinese Bulletin of Botany, 2005, 40(S1): 11-21.
[17] 闫绍鹏, 訾晓雪, 王秋玉. 不同木质底物诱导下桦剥管菌细胞内差异蛋白质分析[J]. 南京林业大学学报(自然科学版), 2019, 43(1): 181-185. YAN S P, ZI X X, WANG Q Y. Intracellular proteome analysis of Piptoporus betulinus induced by different wood substrates[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(1): 181-185. DOI: 10.3969/j.issn.1000-2006.201702019.
[18] 庄明浩, 陈双林, 李迎春, 等. CO2浓度升高对毛竹器官矿质离子吸收、运输和分配的影响[J]. 生态学报, 2013, 33(14): 4297-4305. ZHUANG M H, CHEN S L, LI Y C, et al. Effects of increased concentrations of gas CO2 on mineral ion uptake, transportation and distribution in Phyllostachys edulis[J]. Acta Ecologica Sinica, 2013, 33(14): 4297-4305. DOI: 10.5846/stxb201204130524.
[19] 代婷婷, 姚新转, 吕立堂, 等. 烟草NAC4基因的克隆及其抗旱功能分析[J]. 农业生物技术学报, 2018, 26(5): 764-773. DAI T T, YAO X Z, LV L T, et al. Cloning and drought-resistant function analysis of NAC4 gene in tobacco(Nicotiana tabacum)[J]. Journal of Agricultural Biotechnology, 2018, 26(5): 764-773. DOI: 10.3969/j.issn.1674-7968.2018.05.004.
[20] NEGI N P, SHRIVASTAVA D C, SHARMA V, et al. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco[J]. Plant Cell Reports, 2015, 34(7): 1109-1126. DOI: 10.1007/s00299-015-1770-4.
[21] 相昆, 徐颖, 李国田, 等. 外源NO对低温胁迫下核桃幼苗活性氧代谢的影响[J]. 林业科学, 2016, 52(1): 143-149. XIANG K, XU Y, LI G T, et al. Effects of exogenous nitric oxide on reactive oxygen metabolism of walnut seedlings under low temperature stress[J]. Scientia Silvae Sinicae, 2016, 52(1): 143-149. DOI: 10.11707/j.1001-7488.20160117.
[22] ARAI M, MIYASHITA M, KOBORI A, et al. Carbonyl stress and schizophrenia[J]. Psychiatry and Clinical Neurosciences, 2014, 68(9): 655-665. DOI: 10.1111/pcn.12216.
[23] XUE G P, WAY H M, RICHARDSON T, et al. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat[J]. Molecular Plant, 2011, 4(4): 697-712. DOI: 10.1093/mp/ssr013.
[24] 宋浩, 丁伟, 沙伟, 等. 不同烟草青枯病抗性品种的蛋白质组学比较[J]. 中国烟草科学, 2011, 32(5): 70-76. SONG H, DING W, SHA W, et al. Comparative analysis of proteomics in Tobacco cultivars with different Ralstonia solanacearm resistance[J]. Chinese Tobacco Science, 2011, 32(5): 70-76. DOI: 10.3969/j.issn.1007-5119.2011.05.016.
[25] 倪飞, 励文豪, 蔡苗苗, 等. 光皮桦转录组及S-腺苷甲硫氨酸合成酶基因分析[J]. 农业生物技术学报, 2018, 26(3): 410-420. NI F, LI W H, CAI M M, et al. Analysis of transcriptome and the S-adenosylmethionine synthetase(SAMS)genes in Betula luminifera[J]. Journal of Agricultural Biotechnology, 2018, 26(3): 410-420. DOI: 10.3969/j.issn.1674-7968.2018.03.006.
[26] 赵晋锋, 余爱丽, 朱晶莹, 等. 玉米S-腺苷甲硫氨酸合成酶基因(SAMS)逆境胁迫下的表达分析[J]. 河北农业大学学报, 2010, 33(5): 13-17. ZHAO J F, YU A L, ZHU J Y, et al. Expressional analysis of SAMS gene from Zea mays under abiotic stresses[J]. Journal of Agricultural University of Hebei, 2010, 33(5): 13-17. DOI: 10.3969/j.issn.1000-1573.2010.05.003.
[27] BRINKER M, BROSCHé M, VINOCUR B, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation[J]. Plant Physiology, 2010, 154(4): 1697-1709. DOI: 10.1104/pp.110.164152.
[28] 雷震, 裴玉贺, 赵美爱, 等. 盐胁迫下玉米叶片差异蛋白的双向电泳分析[J]. 玉米科学, 2013, 21(3): 82-86. LEI Z, PEI Y H, ZHAO M A, et al. Analysis of soluble maize leaf proteins under salinity stress by two-dimensional electrophoresis[J]. Journal of Maize Sciences, 2013, 21(3): 82-86. DOI: 10.13597/j.cnki.maize.science.2013.03.018.
[29] 张美华, 崔月, 张少斌. 豌豆肌动蛋白异型体PEAc3在不同干旱条件下的表达分析[J]. 北方园艺, 2017(8): 107-110. ZHANG M H, CUI Y, ZHANG S B. Expression analysis of pea actin isoform(PEAc3)under different drought conditions[J]. Northern Horticulture, 2017(8): 107-110. DOI: 10.11937/bfyy.201708024.
[30] JANGPROMMA N, KITTHAISONG S, LOMTHAISONG K, et al. A proteomics analysis of drought stress-responsive proteins as biomarker for drought-tolerant sugarcane cultivars[J]. American Journal of Biochemistry and Biotechnology, 2010, 6(2): 89-102. DOI: 10.3844/ajbbsp.2010.89.102.

Last Update: 2019-03-25