我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

指数施肥对紫椴实生苗生长和根系形态的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年02期
Page:
91-97
Column:
研究论文
publishdate:
2020-03-31

Article Info:/Info

Title:
Effects of exponential fertilization on growth and root morphology of Tilia amurensis seedlings
Article ID:
1000-2006(2020)02-0091-07
Author(s):
YANG Yang1 SHI Haoran2 JI Li1 YANG Lixue1*
(1.College of Forestry, Northeast Forestry University, Harbin 150040, China; 2. Forestry Research Institute of Zhaotong City, Yunnan Province, Zhaotong 657000, China)
Keywords:
Tilia amurensis Rupr. exponential fertilization seedling growth root morphology nitrogen utilization
Classification number :
S723
DOI:
10.3969/j.issn.1000-2006.201811061
Document Code:
A
Abstract:
【Objective】 Exponential fertilization is one of the nutrient loading methods, which adds the required nutrients into soil, according to the relative growth rate of seedlings. The effects of different fertilization methods and different nitrogen content on the growth, nutrient content and root morphology of seedlings were investigated in this study to reveal the regularity of the nitrogen absorption and the utilization of Tilia amurensis seedlings and provide scientific reference for cultivation of high quality seedlings. 【Method】 Under field conditions, nitrogen fertilization experiment was conducted with one-year-old seedlings of Tilia amurensis. Further, three treatments were applied: conventional fertilization(200 mg per seedling, CK), 1 time exponential fertilization(207.46 mg per seedling, No.E100), and 2 times exponential fertilization(414.92 mg per seedling, No.E200). The fertilization interval time was seven days, and nitrogen fertilizer was applied for 10 weeks until the end of the growing season. During the experimental period, the height and base diameter of seedlings were measured weekly after fertilization, and the data were used to plot the growth curve. When these seedlings were harvested, roots were separated from the plants for scanning and calculating their morphological indexes(root length, root surface area, root volume). After drying, the biomass, nitrogen content and nitrogen concentration of each plant organs were determined. 【Result】 Exponential fertilization significantly improved the height and base diameter growth of T. amurensis seedlings compared with those by conventional fertilization. The seedling mean biomass of E100 and E200 treatments were 1.63 and 1.66 times higher than that of CK(P<0.05), respectively. The of shoot to root ratio was CK > E100 > E200 with increasing amount of nitrogen. The tendency of N content in roots, stems and leaves of seedlings was E200 > E100 > CK. The nitrogen content of the whole plant in E200 was 349.24 mg per seedling, whereas nitrogen contents of the whole plant in E100 and CK were 338.21 and 94.48 mg per seedling, respectively. The order of N concentration in roots, stems and leaves was E100 > E200 > CK. The root length, root surface area root volume, specific root length, specific root surface area, and root tissue density of the seedlings had the same trend which was expressed as E100 > E200 > CK. The nitrogen harvest index of seedlings showed E100 > E200 > CK(the index of E100 was 3.45 times of CK). The seedling quality index of E100 was 0.89 times higher than that of CK.【Conclusion】 Seedlings with nitrogen exponential fertilization have a better performance in growth, nutrient accumulation and root morphological characteristics than that of conventional fertilization, and the seedlings of Tilia amurensis treated with exponential fertilization at E100(207.46 mg per seedling)grew best based on earlier measured indexes

References


[1] OLIET J A, PLANELLES R, ARTERO F, et al. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition[J]. New Forests, 2009, 37(3): 313-331. DOI:10.1007/s11056-008-9126-3.
[2] OLIET J A, TEJADA M, SALIFU K F, et al. Performance and nutrient dynamics of holm oak(Quercus ilex L.)seedlings in relation to nursery nutrient loading and post-transplant fertility[J]. European Journal of Forest Research, 2009, 128(3): 253-263. DOI:10.1007/s10342-009-0261-y.
[3] TIMMER V R. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites[J]. New Forests, 1997, 13(1/2/3): 279-299. DOI:10.1023/A:1006502830067.
[4] HAWKINS J, BURGESS D, MITCHELL K. Growth and nutrient dynamics of western hemlock with conventional or exponential greenhouse fertilization and planting in different fertility conditions[J]. Canadian Journal of Forest Research, 2005, 35(4): 1002-1016. DOI:10.1139/x05-026.
[5] MALIK V, TIMMER V R. Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixedwood sites: a bioassay study[J]. Canadian Journal of Forest Research, 1998, 28(2): 206-215. DOI:10.1139/cjfr-28-2-206.
[6] SALIFU K F, JACOBS D F, BIRGE Z K D. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands[J]. Restoration Ecology, 2009, 17(3): 339-349. DOI:10.1111/j.1526-100x.2008.00373.x.
[7] SALIFU K F, TIMMER V R. Nutrient retranslocation response of seedlings to nitrogen supply[J]. Soil Science Society of America Journal, 2001, 65(3):905. DOI:10.2136/sssaj2001.653905x.
[8] ISLAM M A, APOSTOL K G, JACOBS D F, et al. Fall fertilization of Pinus resinosa seedlings: nutrient uptake, cold hardiness,and morphological development[J]. Annals of Forest Science, 2009, 66(7): 704. DOI:10.1051/forest/2009061.
[9] 林平, 邹尚庆, 李国雷, 等. 油松容器苗生长和氮吸收对指数施肥的响应[J]. 南京林业大学学报(自然科学版), 2013, 37(3): 23-28. LIN P, ZOU S Q, LI G L, et al. Response of growth and N uptake of Pinus tabulaeformis container seedlings to exponential fertilization[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(3): 23-28.DOI:10.3969/j.issn.1000-2006.2013.03.005.
[10] TIMMER V R, MUNSON A D. Site-specific growth and nutrition of planted Picea mariana in the Ontario Clay Belt. IV. Nitrogen loading response[J]. Canadian Journal of Forest Research, 1991, 21(7): 1058-1065. DOI:10.1139/x91-145.
[11] 郝龙飞, 王庆成, 张彦东, 等. 指数施肥对山桃稠李播种苗生物量及养分动态的影响[J]. 林业科学, 2012, 48(6): 33-39. HAO L F, WANG Q C, ZHANG Y D, et al. Effect of exponential fertilization on biomass and nutrient dynamics of Padus maackii seedlings[J]. Scientia Silvae Sinicae, 2012, 48(6): 33-39.
[12] 李国雷, 祝燕, 蒋乐, 等. 指数施肥对栓皮栎容器苗生长和氮积累的影响[J]. 东北林业大学学报, 2012, 40(11): 6-9. LI G L, ZHU Y, JIANG L, et al. Effect of exponential fertilization on growth and nitrogen storage of containerized quercus variabilis seedlings[J]. Journal of Northeast Forestry University, 2012, 40(11): 6-9. DOI:10.3969/j.issn.1000-5382.2012.11.002.
[13] 王益明, 万福绪, 胡菲, 等. 指数施肥对美国山核桃幼苗根系形态的影响[J]. 东北林业大学学报, 2018, 46(3): 29-32. WANG Y M, WAN F X, HU F, et al. Effects of exponential fertilization on root morphology of pecan seedlings [J]. Journal of Northeast Forestry University, 2018, 46(3): 29-32. DOI:10.13759/j.cnki.dlxb.2018.03.006.
[14] 唐桂兰, 刘小星, 芦建国. 氮素指数施肥对夏蜡梅幼苗生长、养分分配的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(6): 134-140. TANG G L, LIU X X, LU J G. Effects of nitrogen exponential fertilization on growth and nutrient distribution of Sinocalycanthus chinensis seedlings[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(6): 134-140. DOI:10.3969/j.issn.1000-2006.201604043.
[15] CHEN L, WANG C S, DELL B, et al. Growth and nutrient dynamics of Betula alnoides seedlings under exponential fertilization[J]. Journal of Forestry Research, 2018, 29(1): 111-119. DOI:10.1007/s11676-017-0427-2.
[16] LYNCH J. Root architecture and plant productivity[J]. Plant Physiology, 1995, 109(1): 7-13. DOI:10.1104/pp.109.1.7.
[17] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1): 36-46. YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1): 36-46. DOI:10.3864/j.issn.0578-1752.2011.01.005.
[18] EISSENSTAT D M, WELLS C E, YANAI R D, et al. Building roots in a changing environment: implications for root longevity[J]. New Phytologist, 2000, 147(1): 33-42. DOI:10.1046/j.1469-8137.2000.00686.x.
[19] CHAPIN F S, MATSON P A, MOONEK P M. Principles of terrestrial ecosystem ecology[M].New York: Springer, 2011. DOI:10.1007/978-1-4419-9504-9.
[20] 王文娜, 王燕, 王韶仲, 等.氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27(4): 1294-1302. WANG W N, WANG Y, WANG S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: a review[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1294-1302. DOI:10.13287/j.1001-9332.201604.032.
[21] 王九龄, 杨建平. 紫椴种子休眠原因的初步研究[J]. 林业科学, 1981, 17(3): 317-324. WANG J L, YANG J P. Preliminary study on seed dormancy of Tilia amurensis[J]. Scientia Silvae Sinicae, 1981, 17(3): 317-324.
[22] 王海南, 沈海龙, 杨立学. 紫椴嫩枝扦插繁殖技术研究[J]. 经济林研究, 2012, 30(3): 106-110. WANG H N, SHEN H L, YANG L X. Techniques of softwood cuttings propagation in Tilia amurensis[J]. Nonwood Forest Research, 2012, 30(3): 106-110. DOI:10.14067/j.cnki.1003-8981.2012.03.027.
[23] 张羽, 陈祥伟, 杨立学, 等. 化控物质对紫椴棚式育苗生长和抗寒性的效应[J]. 东北林业大学学报, 2001, 29(2): 21-26. ZHANG Y, CHEN X W, YANG L X, et al. The seedling growth and cold-resistance of Tilia amurensis treated by chemical control substances[J]. Journal of Northeast Forestry University, 2001, 29(2):21-26. DOI:10.3969/j.issn.1000-5382.2001.02.006.
[24] IMO M, TIMMER V R. Nitrogen uptake of mesquite seedlings at conventional and exponential fertilization schedules[J]. Soil Science Society of America Journal, 1992, 56(3): 927. DOI:10.2136/sssaj1992.03615995005600030041x.
[25] 张彦东, 范志强. 不同形态N素对水曲柳幼苗生长的影响[J]. 应用生态学报, 2000, 11(5): 665-667.ZHANG Y D, FAN Z Q. Effect of different nitrogen forms on growth of Fraxinus mandshurica seedlings[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 665-667. DOI:http://ir.xtbg.org.cn/handle/353005/2438.
[26] BURGESS D. Western hemlock and Douglas-fir seedling development with exponential rates of nutrient addition[J]. Forest Science, 1991, 37(37): 54-67.
[27] TIMMER V R, MILLER B D. Effects of contrasting fertilization and moisture regimes on biomass, nutrients, and water relations of container grown red pine seedlings[J]. New Forests, 1991, 5(4): 335-348. DOI:10.1007/bf00118861.
[28] TIMMER V R, ARMSTRONG G. Growth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions[J]. Canadian Journal of Forest Research, 1987, 17(7): 644-647. DOI:10.1139/x87-105.
[29] XU X, TIMMER V R. Biomass and nutrient dynamics of Chinese fir seedlings under conventional and exponential fertilization regimes[J]. Plant & Soil, 1998, 203(2): 313-322.
[30] QU L Y, QUORESHI A M, KOIKE T. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes[J]. Plant and Soil, 2003, 255(1): 293-302. DOI:10.1023/a:1026159709246.
[31] HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162(1): 9-24. DOI:10.1111/j.1469-8137.2004.01015.x.

Last Update: 2019-03-25