我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

松针精油的协同抑菌效应及机制(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年02期
Page:
98-104
Column:
研究论文
publishdate:
2020-03-31

Article Info:/Info

Title:
Synergistic antimicrobial effect and mechanism of pine needle essential oil
Article ID:
1000-2006(2020)02-0098-07
Author(s):
LIU Wenli1BAO Yihong12*
(1. College of Forestry,Northeast Forestry University,Harbin 150040,China; 2. Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province,Harbin 150040,China)
Keywords:
pine needle essential oil synergistic effect bacteriostatic mechanism Pinus tabulaeformis var. mukdensis P. sylvestris var. mongolica Litv. P. koraiensis Sieb. et Zucc
Classification number :
TS201.3
DOI:
10.3969/j.issn.1000-2006.201902016.
Document Code:
A
Abstract:
【Objective】Synergistic bacteriostatic effects of pine needle essential oil from three pine species on bacteria and the underlying mechanism were studied; moreover, a theoretical basis was provided for the use of pine needle essential oil as a natural bacteriostatic substance to inhibit the growth of microorganisms and its application in food and cosmetics.【Method】The antibacterial effects of pine needle oil from Pinus tabulaeformis var. mukdensis(PTEO), P. sylvestris var. mongolica Litv.(PSEO), and P. koraiensis Sieb. et Zucc.(PKEO)on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis were determined by using a micro-dilution method. The synergistic effects and the optimal compounding ratio were determined by using a checkerboard dilution method. The antibacterial mechanism against Escherichia Coli, Staphylococcus aureus, and Bacillus subtilis was studied using the optimal essential oil ratio. 【Result】The results revealed that the three essential oils showed good antibacterial effects against the three tested bacteria. After compounding, the effect was evidently improved, and the composition of and bacteriostatic effect on different microorganisms also differed. The highest antibacterial effects after compounding were obtained with the following ratios: E. coli (PTEO and PSEO, MIC combination 0.31 μL/mL each), S. aureus(PKEO and PTEO, MIC combination 0.16 μL/mL each), and B. subtilis(PKEO and PSEO, MIC combination: 0.16 and 0.08 μL/mL, respectively). The investigation of the antibacterial mechanism of the compounded oils on the three tested bacteria indicated that compounded essential oils can disrupt the normal morphology of bacterial cells and permeability of cell membranes, leading to the leakage of macromolecules such as nucleic acids, destruction of the permeability of the cell membrane proteins; moreover, they interfere with the synthesis and accumulation of cell proteins. 【Conclusion】The combination of three pine needle essential oils has a good antibacterial effect, and the synergistic effect of the essential oils can reduce the amount of essential oils required for the antibacterial effect. The study provides a preliminary understanding of the antibacterial mechanism of the pine needle essential oil

References


[1] BURT S. Essential oils: their antibacterial properties and potential applicationsin foods: a review[J]. International Journal of Food Microbiology, 2004, 94(3): 223-253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
[2] BASSOLé I H N, JULIANI H R. Essential oils in combination and their antimicrobial properties[J]. Molecules, 2012, 17(4): 3989-4006. DOI: 10.3390/molecules17043989.
[3] 叶建仁, 尚征贤,薛建明. 湿地松针叶中挥发油的化学组成[J]. 南京林业大学学报, 1994, 18(2): 60-64.YE J R, SHANG Z X, XUE J M. Chemical composition of volatile oil in needle of slash pine[J]. Journal of Nanjing Forestry University, 1994, 18(2): 60-64. DOI:10.3969/j.issn.1000-2006.1994.02.011.
[4] 王得道. 水蒸气法提取八种松科植物松针挥发油的研究及GC/MS分析[D].长春: 吉林农业大学, 2013. WANG D D. Studies on extraction of the essential on from eight Pinaceae plants pine needle by steam method and GC/MS analysis[D]. Changchun: Jilin Agricultural University, 2013.
[5] 程满环, 翟大才, 毕淑峰. 黄山松与马尾松松针挥发性成分对比分析[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 93-98.CHENG M H, ZHAI D C, BI S F. Contrastive analysis of volatile components from the pine needles of Pinus taiwanensis and P. massoniana[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(3): 93-98. DOI: 10.3969/j.issn.1000-2006.201709022.
[6] 胡文杰, 罗辉, 邹林海, 等. 雪松松针挥发油化学成分及抗氧化活性研究[J]. 植物研究, 2017,37(4): 621-627.HU W J, LUO H, ZOU L H, et al. Study on chemical composition and antioxidant activity of essential oil from cedar needles[J]. Bulletin of Botanical Research, 2017, 37(4): 621-627. DOI: 10.7525/j.issn.1673-5102.2017.04.019.
[7] 魏凤香, 李美玉, 宋宇宏, 等. 松针油诱导肝癌HepG2细胞凋亡及对端粒酶活性的影响[J]. 中药材, 2008, 32(8): 1197-1200.WEI F X, LI M, SONG Y H, et al. Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line[J]. Journal of Chinese Medicinal Materials, 2008, 32(8): 1197-1200. DOI: 10.3321/j.issn:1001-4454.2008.08.031.
[8] CHEN W Q, XU B, MAO J W, et al. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation[J]. Asian Pac J Cancer Prev, 2014, 15(7): 3293-3297. DOI: 10.7314/apjcp.2014.15.7.3293.
[9] KARAPANDZOVA M, STEFKOV G, CVETKOVIKJ I, et al. Chemical composition and antimicrobial activity of the essential oils of Pinus peuce(Pinaceae)growing wild in R. Macedonia[J]. Natural Product Communications, 2014, 9(11): 1934578X1400901. DOI: 10.1177/1934578x1400901124.
[10] JOO H E, LEE H J, SOHN E J, et al. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic β cells[J]. Bioscience Biotechnology and Biochemistry, 2013, 77(10): 1997-2001. DOI: 10.1271/bbb.130254.
[11] TUMEN I, AKKOL E K, TASTAN H, et al. Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine(Pinus pinaster Ait)[J]. Journal of Ethnopharmacology, 2018, 211: 235-246. DOI: 10.1016/j.jep.2017.09.009.
[12] 杨书珍, 蒋丹丹, 范刚, 等. 松针提取物对柑橘青霉病菌的抑制作用及活性成分分析[J]. 现代食品科技, 2016, 32(1): 65-69.YANG S Z, JIANG D D, FAN G, et al. Analysis of the antifungal activity of pine needle extracts and their active components against Citrus blue mold[J]. Modern Food Science & Technology, 2016, 32(1): 65-69. DOI: 10.13982/j.mfst.1673-9078.2016.1.010.
[13] 向芷璇. 柑橘的有机保鲜: 马尾松针叶对柑橘果实抑菌保鲜作用[J]. 食品安全导刊, 2016(36): 127-128.XIANG Z X. Organic preservation of citrus-antibacterial and fresh-keeping effect of Pinus massoniana needles on citrus fruits [J]. China Food Safety Magazine, 2016,(36): 127-128. DOI: 10.3969/j.issn.1674-0270.2016.36.096.
[14] 张全景, 冯小海, 徐虹, 等. ε-聚赖氨酸在冷鲜猪肉保鲜中的应用[J]. 食品科学, 2011, 32(2): 290-296.ZHANG Q J, FENG X H, XU H, et al. Application of ε-polylysine to keep chilled pork fresh[J]. Food Science, 2011, 32(2): 290-296.
[15] FADIL M, FIKRI-BENBRAHIM K, RACHIQ S, et al. Combined treatment of, Thymus vulgaris, L. Rosmarinus officinalis, L. and, Myrtus communis, L. essential oils against, Salmonella typhimurium: optimization of antibacterial activity by mixture design methodology[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126; 211-220. DOI: 10.1016/j.ejpb.2017.06.002.
[16] KASRATI A,ALAOUI JAMALI C, FADLI M, et al. Antioxidative activity and synergistic effect of Thymus saturejoides Coss. essential oils with cefixime against selected food-borne bacteria[J]. Industrial Crops and Products, 2014, 61: 338-344. DOI: 10.1016/j.indcrop.2014.07.024.
[17] 包怡红, 刘文丽. 黑皮油松松针精油的超声波辅助-盐析-水蒸气蒸馏法提取及其抑菌效果和稳定性[J]. 东北林业大学学报, 2018, 46(10): 54-58.BAO Y H, LIU W L. Extraction of Pinus tabulaeformis needles essential oils by ultrasoni-assisted salting-out hydrodistillation and its antibacterial effect and stability[J]. Journal of Northeast Forestry University, 2018, 46(10): 54-58. DOI: 10.3969/j.issn.1000-5382.2018.10.011.
[18] CLEMENTE I, AZNAR M, SILVA F, et al. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria[J]. Innovative Food Science & Emerging Technologies, 2016, 36: 26-33. DOI: 10.1016/j.ifset.2016.05.013.
[19] HALL M J, MIDDLETON R F, WESTMACOTT D. The fractional inhibitory concentration(FIC)index as a measure of synergy[J]. Journal of Antimicrobial Chemotherapy, 1983, 11(5): 427-433.DOI: 10.1093/jac/11.5.427.
[20] WANG C J, CHANG T, YANG H, et al. Surface physiological changes induced by lactic acid on pathogens in consideration of pKa and pH[J]. Food Control, 2014, 46: 525-531. DOI: 10.1016/j.foodcont.2014.06.024.
[21] 吕飞. 天然植物精油的抑菌活性及其作用机理研究[D]. 北京: 北京化工大学, 2011.LV F. Antimicrobial effects and mechanism of action of plant essential oils[D]. Beijing: Beijing University of Chemical Technology, 2011.
[22] LIN, MAO X F, SUN Y H, et al. Antibacterial mechanism of artemisinin/beta-cyclodextrins against methicillin-resistant Staphylococcus aureus(MRSA)[J]. Microbial Pathogenesis, 2018, 118: 66-73. DOI: 10.1016/j.micpath.2018.03.014.
[23] 侯温甫, 欧阳何一, 吴忌, 等. 曲酸对冷鲜鸭肉中优势腐败菌的抑制作用及其抑菌机理研究[J]. 食品科学, 2019, 40(1): 278-285.HOU W F, OUYANG H Y, WU J, et al. Inhibitory effect of kojic acid on dominant spoilage bacteria in chilled duck meat and its mechanism[J]. Food Science, 2019, 40(1): 278-285. DOI: 10.7506/spkx1002-6630-20180613-226.
[24] LI K J, GUAN G L, ZHU J X, et al. Antibacterial activity and mechanism of a laccase-catalyzed chitosan-Gallic acid derivative against Escherichia coli and Staphylococcus aureus[J]. Food Control, 2019, 96: 234-243. DOI: 10.1016/j.foodcont.2018.09.021.
[25] COX S, MANN C, MARKHAM J, et al. Determining the antimicrobial actions of tea tree oil[J]. Molecules, 2001, 6(12): 87-91. DOI: 10.3390/60100087.
[26]SHEN S X, ZHANG T H, YUAN, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Control, 2015, 47: 196-202. DOI: 10.1016/j.foodcont.2014.07.003.
[27] LONG M, WANG J, ZHUANG H, et al. Performance and mechanism of standard nano-TiO2(P-25)in photocatalytic disinfection of foodborne microorganisms-Salmonella typhimurium and Listeria monocytogenes[J]. Food Control, 2014, 39: 68-74. DOI: 10.1016/j.foodcont.2013.10.033.
[28] BAJPAI V K, SHARMA A, BAEK K H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens[J]. Food Control, 2013, 32(2): 582-590. DOI: 10.1016/j.foodcont.2013.01.032.
[29] 刘唤明, 张文滔, 吴燕燕, 等. 脂肽和茶多酚对副溶血弧菌的协同抑菌效应和机理[J]. 食品科学, 2017, 38(13): 14-19.LIU H M, ZHANG W T, WU Y Y, et al. Synergistic antimicrobial effect and mechanism of lipopeptides and tea polyphenols against Vibrio parahaemolyticus fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens[J]. Food Control, 2013, 32(2): 582-590. DOI: 10.1016/j.foodcont.2013.01.032.
[29] 刘唤明, 张文滔, 吴燕燕, 等. 脂肽和茶多酚对副溶血弧菌的协同抑菌效应和机理[J]. 食品科学, 2017, 38(13): 14-19.LIU H M, ZHANG W T, WU Y Y, et al. Synergistic antimicrobial effect and mechanism of lipopeptides and tea polyphenols against . Food Science, 2017, 38(13): 14-19. DOI: 10.7506/spkx1002-6630-201713003.

Last Update: 2019-03-25