我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

不同分解程度木麻黄凋落物的养分特征及微生物功能多样性分析(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2020年02期
Page:
197-205
Column:
研究论文
publishdate:
2020-03-31

Article Info:/Info

Title:
Nutrient composition of litters and functional diversity of different microorganisms in various decomposition stages of Casuarina equisetifolia plantations
Article ID:
1000-2006(2020)02-0197-09
Author(s):
XU Zhixia ZHANG Yaqian TAO Yue LI Ling LI Lei*
(Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Science, Hainan Normal University, Haikou 571158, China)
Keywords:
Casuarina equisetifolia forest litter surface microbe endophyte nutrient characteristics metabolic diversity carbon source utilization
Classification number :
S714.2
DOI:
10.3969/j.issn.1000-2006.201901021
Document Code:
A
Abstract:
【Objective】We focused on the relationship between the microbial diversity and nutrient composition of Casuarina equisetifolia litter by determining changes in the pattern of litter nutrient decomposition and the characteristics of microbial carbon source utilization.【Method】 As a study site, we selected a C. equisetifolia plantation along the coast of the Guilinyang area of Haikou City in Hainan Province, China, which comprises trees of between 10 and 15 years of age. Using the S-type five-point sampling method, we obtained samples representative of three stages of litter decomposition from soil depths of 0-5 cm, ≥5-10 cm and ≥10-15 cm, respectively. The Biolog microporosity plate method was used to determine the functional variation in the diversity of the surface microbes and endophytes of litters at the different stages of decomposition. Principal component analysis(PCA)and redundancy analysis(RDA)analyses were used to determine differences in the utilization of different carbon sources. 【Result】 ① With an increase in the degree of litter decomposition, we observed decreases in the contents of organic carbon, total nitrogen and total phosphorus. ② We also detected significant differences in the functional diversities of exogenous and endophytic bacterial communities at the different stages of decomposition. The average well color development(AWCD)of exogenous microbes increased with an increase in the degree of decomposition, whereas that of endophytes decreased. ③ The Shannon and Simpson diversity index of surface microbes were obviously increased with the increasing decomposition degree of litters. However, there were no significant differences in McIntosh indexes. The Shannon and Simpson diversity index of endophytes of litters showed a similar trend with surface microbes, but the McIntosh index significantly decreased. ④ Exogenous and endophytic bacteria showed different efficiencies in the utilization of six major categories of carbon sources. For both surface microbes and endophytes, the primary carbon sources utilized during the early stages of decomposition were carbohydrates, followed by amides and phenolic acids in the latter stages. ⑤ The PCA results revealed significant differences in litter microbial function among the different degrees of decomposition, and RDA indicated that organic matter and total nitrogen can significantly affect the diversity of surface microbes. 【Conclusion】 Our results revealed that carbon metabolic activity and surface microbe diversity increased with an increase in the degree of litter decomposition, whereas endophyte metabolic activity decreased in response to an increase in microbial diversity. Moreover, we found that pH and total nitrogen content were the two critical factors determining microbial diversity, and that the surface microbes and endophytes associated with litter play different roles during the different stages of decomposition

References


[1] 李云, 周建斌, 董燕捷, 等. 黄土高原不同植物凋落物的分解特性[J]. 应用生态学报, 2012, 23(12):3309-3316. LI Y, ZHOU J B, DONG Y J, et al. Decomposition of different plant litters in Loess Plateau of northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12):3309-3316. DOI:10.13287/j.1001-9332.2012.0417.
[2] BRAY S R, KITAJIMA K, MACK M C. Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate[J]. Soil Biology & Biochemistry, 2012, 49:30-37. DOI: 10.1016/j.soilbio.2012.02.009.
[3] 曲浩, 赵学勇, 赵哈林, 等. 陆地生态系统凋落物分解研究进展[J]. 草业科学, 2010, 27(8):44-51. QU H, ZHAO X Y, ZHAO H L, et al. Research progress of litter decomposition in terrestrial ecosystems[J]. Pratacultural Science,2010, 27(8):44-51.
[4] 刘利. 季节性冻融对亚高山/高山森林土壤微生物多样性的影响[D].成都:四川农业大学,2010. LIU L. Soil bacterial diversity in the subalpine/alpine forests of western Sichuan affected by seasonal freeze-thaw cycles[D]. Chengdu: Sichuan Agricultural University, 2010.
[5] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology & Biochemistry, 2002, 34(3):387-401.DOI: 10.1016/S0038-0717(01)00199-7.
[6] 邓仁菊, 杨万勤, 吴福忠. 季节性冻融对岷江冷杉和白桦凋落物酶活性的影响[J]. 应用生态学报, 2009, 20(5):1026-1031. DENG R J, YANG W Q, WU F Z. Effects of seasonal freeze-thaw on the enzyme activities in Abies faxoniana and Betula platylla litters[J]. Chinese Journal of Applied Ecology, 2009, 20(5):1026-1031. DOI:10.13287/j.1001-9332.2009.0180.
[7] 郑锟. 沙质海岸木麻黄防护林的结构配置与防护效能研究[D]. 福州:福建农林大学, 2008. ZHENG K. The structure configure and protection effect of Casuarina equisetifolia protection forest on sandy coast[D]. Fuzhou: Fujian Agriculture and Forestry University,2008.
[8] 刘成路, 冉焰辉, 陶悠, 等. 海南岛海岸线木麻黄林现状调查[J]. 林业资源管理, 2013(2):102-118. LIU C L, RAN Y H, TAO Y, et al. The present situation investigation of coastline Casuarina forest in Hainan Island[J]. Forest Resources Management, 2013(2):102-118. DOI: 10.3969/j.issn.1002-6622.2013.02.019.
[9] 肖胜生, 郭瑞红, 叶功富. 沿海木麻黄衰退机理与维护途径的研究进展[J]. 热带林业, 2007, 35(2):15-17. XIAO S S, GUO R H, YE G F. Research advances of decline mechanism and maintenance approach of Casuarinia equisefolia in coastal area[J]. Tropical Forestry, 2007, 35(2):15-17. DOI: 10.3969/j.issn.1672-0938.2007.02.005.
[10] 邓兰桂, 孔垂华, 骆世明, 等. 木麻黄小枝提取物的分离鉴定及其对幼苗的化感作用[J]. 应用生态学报, 1996, 7(2):145-149. DENG L G, KONG C H, LUO S M, et al. Isolation and identification of extract from Casuarnia equisetifolia branchlet and its allelopathy on seedling growth[J]. Chinese Journal of Applied Ecology, 1996, 7(2):145-149. DOI:10.13287/j.1001-9332.1996.0030.
[11] 林武星, 洪伟, 叶功富. 木麻黄根系浸提液对幼苗营养吸收和生长的影响[J]. 浙江农林大学学报, 2005, 22(2):170-175. LIN W X, HONG W, YE G F. Effect of water extract of Casuarina equisetifolia root on nutrient absorption and growth of the seedlings[J]. Journal of Zhejiang Forestry College, 2005, 22(2):170-175. DOI: 10.3969/j.issn.2095-0756.2005.02.009.
[12] 林武星. 木麻黄自身他感作用影响因素及缓解[J]. 防护林科技, 2006(6):1-5.LIN W X. Study on effect factors and relief of self-allelopathy of Casuarina[J]. Protection Forest Science and Technology, 2006(6):1-5. DOI: 10.3969/j.issn.1005-5215.2006.06.001.
[13] LI L, ZHANG Y, WANG C, et al. Effects of leachates of Casuarina equisetifolia on photosynthesis and antioxidant enzymes of Vatica mangachapoi seedlings[J]. Allelopathy Journal, 2014, 33(2):189-199. DOI: 10.4025/actasciagron.v36i2.14570.
[14] XU Z X, ZHANG Y, YAO Y, et al. Allelopathic effects of Casuarina equisetifolia extracts on seed germination of native tree species[J]. Allelopathy Journal, 2015, 36(2):283-292.
[15] 蔡大鑫,刘少军,田光辉,等. 海南岛旅游气候资源分析[J]. 现代农业科技,2010(16):18-20,24. CAI D X, LIU S J, TIAN G H, et al. Analysis on tourism climate resource of Hainan Island[J]. Modern Agricultural Sciences and Technology, 2010(16):18-20,24. DOI: 10.3969/j.issn.1007-5739.2010.16.005.
[16] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2000. BO S D. Soil agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[17] 李小容,白礼姣,陈本莉,等.不同林龄木麻黄林地土壤理化性质与生化活性分析[J].西北林学院学报,2014,29(2):37-41. LI X R, BAI L J, CHEN B L, et al. Analysis of soil physicochemical properties and biological activity of the Casuarina equisetifolia forests with different ages[J]. Journal of Northwest Forestry University, 2014,29(2):37-41. DOI:10.3969/j.issn.1001-7461.2014.02.07.
[18] 章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004, 36(4):346-350. ZHANG J E, CAI Y F, GAO A X, et al. Review on laboratory methods for soil microbial diversity[J]. Soils, 2004, 36(4):346-350. DOI: 10.3321/j.issn:0253-9829.2004.04.003.
[19] 柴晓蕾,宋希强,朱婕.华石斛内生真菌组织分布特点及其抑菌活性[J].热带作物学报,2018,39(1):137-144. CHAI X L, SONG X Q, ZHU J. Diversity of endophytic fungi isolated from Dendrobium sinense with different culture media and their antimicrobial activities[J]. Chinese Journal of Tropical Crops, 2018,39(1):137-144. DOI:10.3969/j.issn.1000-2561.2018.01.021.
[20] 林先贵. 土壤微生物研究原理与方法[M]. 北京:高等教育出版社, 2000: 170-172. LIN X G. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2000: 170-172.
[21] CLEVELAND C C, LIPTZIN C D. C:N:P Stoichiometry in soil: is there a “Redfield Ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3):235-252. DOI:10.1007/s10533-007-9132-0.
[22] 许安妮,王宸,陈润芍,等.四川龙溪-虹口常绿阔叶林凋落物与土壤碳、氮、磷化学计量特征分析[J].中国农业科技导报,2019,21(4):158-167. XU A N, WANG C, CHEN R S,et al. C,N,P stoichiometric characteristics analysis of litter and soil in evergreen broad-leaf forest in Longxi-Hongkou Reserve of Sichuan Province[J]. Journal of Agricultural Scienceand Technology,2019,21(4):158-167. DOI:10.13304/j.nykjdb.2018.0205.
[23] 李钦禄,莫其锋,王法明,等.华南热带沿海不同林龄木麻黄人工林养分利用特征[J].应用与环境生物学报,2015,21(1):139-146. LI Q L, MO Q F, WANG F M, et al. Nutrient utilization by nutrient utilization by Casuarina equisetifolia plantation of different ages in the tropical coastal area of South China[J]. Chin J Appl Environ Biol,2015,21(1):139-146. DOI: 10.3724/SP.J.1145.2014.07001.2014.
[24] 曹永昌,谭向平,和文祥,等.秦岭地区不同林分土壤微生物群落代谢特征[J].生态学报,2016,36(10):2978-2986. CAO Y C, TAN X P, HE W X, et al. The metabolism characteristics of microbial community in different forest soil in Qinling Mountains Area[J]. Acta Ecologica Sinica, 2016, 36(10):2978-2986. DOI: 10.5846/stxb201411222316.
[25] 韩冬雪,王宁,王楠楠,等.不同海拔红松林土壤微生物功能多样性[J].应用生态学报,2015,26(12):3649-3656. HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. J Appl Ecol, 2015, 26(12):3649-3656. DOI:10.13287/j.1001-9332.20150929.017.
[26] 吴则焰,林文雄,陈志芳,等.武夷山国家自然保护区不同植被类型土壤微生物群落特征[J].应用生态学报,2013,24(8):2301-2309. WU Z Y, LIN W X, CHEN Z F, et al. Characteristics of soil microbial community under different vegetation types in Wuyishan National Nature Reserve, East China[J]. 2013,24(8):2301-2309. DOI:10.13287/j.1001-9332.2013.0391.
[27] 谢东锋,张光灿,夏宣宣,等.不同浓度酚酸对欧美杨I-107苗木生长和光合特性的影响[J].生态学报,2018,38(5):1789-1798. XIE D F, ZANG G C, XIA X X, et al. Effects of phenolic acids on the growth and photosynthesis of Populus× euramericana ‘Neva’ [J]. Acta Ecologica Sinica, 2018, 38(5):1789-1798. DOI:10.5846/stxb201704120646.
[28] 王文波,马雪松,董玉峰,等.杨树人工林连作与轮作土壤酚酸降解细菌群落特征及酚酸降解代谢规律[J].应用与环境生物学报,2016,22(5):815-822. WANG W B, MA X S, DONG Y F, et al. Community characteristics and degradation metabolism regulation of soil phenolic acid degrading bacteria in poplar plantations under continuous cropping and crop rotation[J]. Chin J Appl Environ Biol, 2016, 22(5):815-822.

Last Update: 2019-03-25