我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

植物的胚形态建成及其基因调控机制研究进展(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2013年05期
Page:
134-138
Column:
综合述评
publishdate:
2013-09-30

Article Info:/Info

Title:
The research progress of the pattern formation and gene regulation mechanism in plant embryogenesis
Article ID:
1000-2006(2013)05-0134-05
Author(s):
WANG Pengkai SHI Jisen ZHANG Yanjuan WU Shuang CHEN Jinhui*
Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education,Nanjing Forestry University, Nanjing 210037, China
Keywords:
pattern formation of embryogenesis auxin signal gene regulation apical meristem
Classification number :
Q948
DOI:
10.3969/j.issn.1000-2006.2013.05.026
Document Code:
A
Abstract:
Embryogenesis is the base of plant growth and development.The single cell gives rise to a functional multicellular organism in this process. In higher plants, the body axes and major tissue are established in the early stage of embryogenesis and serve as a positional framework for subsequent pattern formation. The axial construction can provide a coordinate system for the embryogenesis.In this review, the pattern formation of embryogenesis and the mechanism of gene regulation in Arabidopsis will be discussed. The main reviews are as follows:the zygote elongation and embryogenic polarity are controlled by the MPK/GRD pathway; the asymmetric division and the direction of apicalbasal axis decided by WOX8、WOX9、WOX2 expression; the auxin signal and the gene regulatory network of WOX5, WUS/CLV3, STM had functions in the establishment or maintenance of root and shoot pole; the auxin signal and the antagonism of CUC/TCP expression controled the formation of cotyledons and the establishment of adaxial/abaxial patterning; the SCR/SHR pathway regulated radial patterning in the basal domain of embryo. These key genes and their regulatory genes compose the network of embryogenesis. Understanding these molecular mechanisms shed novel insights into plant development and growth.

References

[1]Roach D A, Wulff R D. Maternal effects in plants[J]. Annual Review of Ecology and Systematics, 1987,18:209-235.
[2]Scheres B. Plant cell identity: The role of position and lineage[J]. Plant Physiology, 2001,125(1):112-114.
[3]Ueda M, Laux T. The origin of the plant body axis[J]. Current Opinion in Plant Biology, 2012,15(6):578-584.
[4]Lukowitz W, Roeder A, Parmenter D, et al. A MAPKK kinase gene regulates extraembryonic cell fate in arabidopsis[J]. Cell, 2004,116(1):109-119.
[5]Jeong S, Palmer T M, Lukowitz W. The RWPRK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling[J]. Current Biology, 2011,21(15):1268-1276.
[6]Bayer M, Nawy T, Giglione C, et al. Paternal control of embryonic patterning in Arabidopsis thaliana[J]. Science Signalling, 2009,323:1485-1488.
[7]Haecker A, GroHardt R, Geiges B, et al. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development, 2004,131(3):657-668.
[8]Jenik P D, Gillmor C S, Lukowitz W. Embryonic patterning in Arabidopsis thaliana[J]. Annu Rev Cell Dev Biol, 2007,23:207-236.
[9]Ueda M, Zhang Z, Laux T. Transcriptional activation of Arabidopsis Axis patterning genes WOX8/9 links Zygote polarity to Embryo development[J]. Developmental cell, 2011,20(2):264-270.
[10]Boutté Y, Ikeda Y, Grebe M. Mechanisms of auxindependent cell and tissue polarity[J]. Current Opinion in Plant Biology, 2007,10(6):616-623.
[11]KleineVehn J, Friml J. Polar targeting and endocytic recycling in auxindependent plant development[J]. Annual Review of Cell and Developmental Biology, 2008,24:447-473.
[12]Robert H S, Friml J. Auxin and other signals on the move in plants[J]. Nature Chemical Biology, 2009,5(5):325-332.
[13]Friml J, Vieten A, Sauer M, et al. Effluxdependent auxin gradients establish the apicalbasal axis of Arabidopsis[J]. Nature, 2003,426:147-153.
[14]Lau S, Slane D, Herud O, et al. Early embryogenesis in flowering plants:setting up the basic body pattern[J]. Annual Review of Plant Biology, 2012,63:483-506.
[15]Scheres B, Wolkenfelt H, Willemsen V, et al. Embryonic origin of the Arabidopsis primary root and root meristem initials[J]. Development, 1994,120(9):2475-2487.
[16]Rademacher E H, M ller B, Lokerse A S, et al. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family[J]. The Plant Journal, 2011,68(4):597-606.
[17]Sato A, Yamamoto K T. Whats the physiological role of Domain IIless Aux/IAA proteins[J]. Plant Signaling & Behavior, 2008,3(7):496-497.
[18]Galinha C, Hofhuis H, Luijten M, et al. PLETHORA proteins as dosedependent master regulators of Arabidopsis root development[J]. Nature, 2007,449:1053-1057.
[19]Schlereth A, M ller B, Liu W, et al. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor[J]. Nature, 2010,464:913-916.
[20]Singh M B, Bhalla P L. Plant stem cells carve their own niche[J]. Trends in Plant Science, 2006,11(5):241-246.
[21]Nakajima K, Sena G, Nawy T, et al. Intercellular movement of the putative transcription factor SHR in root patterning[J]. Nature, 2001,413:307-311.
[22]Dhondt S, Coppens F, De Winter F, et al. SHORTROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating Sphase progression of the cell cycle[J]. Plant Physiology, 2010,154(3):1183-1195.
[23]Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory Loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000,100(6):635-644.
[24]Bleckmann A, WeidtkampPeters S, Seidel CAM, et al. Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane[J]. Plant Physiology, 2010,152(1):166-176.
[25]Ogawa M, Shinohara H, Sakagami Y, et al. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain[J]. Science, 2008,5861:294-294.
[26]Gordon S P, Chickarmane V S, Ohno C, et al. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences, 2009,106(38):16529-16534.
[27]Spinelli S V, Martin A P, Viola I L, et al. A mechanistic link between STM and CUC1 during Arabidopsis development[J]. Plant Physiology, 2011,156(4):1894-1904.
[28]Li Z, Li B, Shen W H, et al. TCP transcription factors interact with AS2 in the repression of classI KNOX genes in Arabidopsis thaliana[J]. The Plant Journal, 2012,71(1):99-107.
[29]Byrne M E, Simorowski J, Martienssen R A. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis[J]. Development, 2002,129(8):1957-1965.
[30]Petráek J, Friml J. Auxin transport routes in plant development[J]. Development, 2009,136(16):2675-2688.
[31]Lewis D R, Wu G, Ljung K, et al. Auxin transport into cotyledons and cotyledon growth depend similarly on the ABCB19 Multidrug Resistancelike transporter[J]. The Plant Journal, 2009,60(1):91-101.
[32]Berleth T, Chatfield S. Embryogenesis:pattern formation from a single cell[C]//Somerville C R, Meyerowiz E M. The Arabidopsis Book, the American Society of Plant Biologists,2009.
[33]Kerstetter R A, Bollman K, Taylor R A, et al. KANADI regulates organ polarity in Arabidopsis[J]. Nature, 2001,411:706-709.
[34]Koyama T, Mitsuda N, Seki M, et al. TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis[J]. The Plant Cell Online, 2010,22(11):3574-3588.
[35]Chandler J W. Cotyledon organogenesis[J]. Journal of Experimental Botany, 2008,59(11):2917-2931.
[36]Zhang J, Elo A, Helariutta Y. Arabidopsis as a model for wood formation[J]. Current Opinion in Biotechnology, 2011,22(2):293-299.
[37]Welch D, Hassan H, Blilou I, et al. Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORTROOT action[J]. Genes & Development, 2007,21(17):2196-2204.

Last Update: 2013-09-30