我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions(PDF)

Journal of Nanjing Forestry University(Natural Science Edition)[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017 04
Page:
25-29
Column:
publishdate:
2017-07-31

Article Info:/Info

Title:
MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions
Article ID:
1000-2006(2017)04-0025-05
Author(s):
LIU Qingliang1 2 LI Yao1 3 FANG Shengzuo1 2*
1.Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing 210037, China;
2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
3. College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Cyclocarya paliurus MaxEnt model potential distribution climate factor suitable cultivation region
Classification number :
S717; Q949.735
DOI:
10.3969/j.issn.1000-2006.201608010
Document Code:
A
Abstract:
【Objective】Cyclocarya paliurus is a valuable tree species that is used for commercial timber, medicine and landscaping. Using percent contribution value, permutation replacement important values and the Jackknife test, the main factors affecting the geographical distribution of C. paliurus were evaluated, in order to provide a theoretical basis for the species’ protection and conservation. 【Method】 Based on 183 presence records and eight environmental variables, we used the MaxEnt model to predict the potential distribution of C. paliurus, as well as areas suitable for its cultivation. 【Result】The accuracy of the MaxEnt model for predicting the potential distribution of C. paliurus was very high, and the area under the receiver operator characteristic curve(AUC value)was 0.964 ± 0.006. According to the model, southern Zhejiang, northwestern Fujian, southern Anhui, eastern Hubei, eastern and western Jiangxi, eastern and western Hunan, eastern Guizhou, eastern Chongqing, southern shaanxi, and northeastern Sichuan are currently highly suitable for planting C. paliurus. As global temperatures increase in future, C. paliurus will likely expand its distribution to higher latitudes and altitudes. 【Conclusion】The main factors affecting the potential distribution of C. paliurus were related to air temperature, including annual mean temperature, seasonal variation and mean diurnal temperature range, moreover annual mean temperature was the most important factor.

References

[1] 方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1): 95-100. DOI:10.3969/j.issn.1000-2006.2007.01.023.FANG S Z, FU X X. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(1): 95-100.
[2] 谢明勇, 谢建华. 青钱柳研究进展[J]. 食品与生物技术学报, 2008, 27(1): 113-121.DOI:10.3321/j.issn.1673-1689.2008.01.021. XIE M Y, XIE J H. Review about the research on Cyclocarya paliurus(Batal.)Iljinskaja[J]. Journal of Food Science and Biotechnology, 2008, 27(1): 113-121.
[3] 尹忠平, 上官新晨, 米丽雪, 等. 青钱柳细胞悬浮培养及三萜化合物积累[J]. 深圳大学学报(理工版), 2011, 28(5): 430-435.YIN Z P, SHANGGUAN X C, MI L X, et al. Suspension culture of Cyclocarya paliurus cells and accumulation of triterpenoids[J]. Journal of Shenzhen University(Science & Engineering), 2011, 28(5): 430-435.
[4] FANG S Z, YANG W, CHU X, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus[J]. Food Chemistry, 2011, 124(4): 1382-1386.
[5] JIANG C, YAO N, WANG Q, et al. Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice[J]. Journal of Ethnopharmacology, 2014, 153(2): 344-351.
[6] 胡文兵, 赵静, 陈婷婷, 等. 青钱柳多糖对高脂血症小鼠的降血脂作用及机制初探[J]. 现代食品科技, 2015, 31(11): 39-44. DOI:10.13982/j.mfst.1673-9078.2015.11.07.HU W B, ZHAO J, CHEN T T,et al. Preliminary study on hipolipidemic effect mechanism of Cyclocarya paliurus polysaccharides in hypolipidemic mice[J]. Modern Food Science and Technology, 2015, 31(11): 39-44.
[7] MIN F F, WAN Y J, NIE S P, et al. Study on colon health benefit of polysaccharide from Cyclocarya paliurus leaves in vivo[J]. Journal of Functional Foods, 2014, 11: 203-209.DOI: 10.1016/j.jff.2014.10.005.
[8] KOZAK K H, GRAHAM C H, WIENS J J. Integrating GIS-based environmental data into evolutionary biology[J]. Trends in Ecology & Evolution, 2008, 23(3): 141-148.
[9] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modelling of species geographic distributions[J]. Ecological Modeling, 2006, 190(3): 231-259.
[10] KUMAR S, STOHLGREN T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of Ecology and Natural Environment, 2009, 1(4): 94-98.
[11] MATYUKHINA D S, MIQUELLE D G, MURZIN A A, et al. Assessing the influence of environmental parameters on Amur tiger distribution in the Russian far east using a MaxEnt modeling approach[J]. Achievements in the Life Sciences, 2014, 8(2): 95-100.DOI:10.1016/j.als.2015.01.002.
[12] 雷军成, 徐海根. 基于 MaxEnt的加拿大一枝黄花在中国的潜在分布区预测[J]. 生态与农村环境学报, 2010, 26(2): 137-141.DOI: 10.3969/j.issn.1673-4831.2010.02.008.LEI J C, XU H G. MaxEnt-based prediction of distribution of Solidago canadensis in China[J]. Journal of Ecology and Rural Environment, 2010, 26(2): 137-141.
[13] 巨云为, 李明阳, 吴文浩. 江苏省松材线虫发生的预测方法[J]. 林业科学, 2010, 46(12): 91-96.DOI:10.11707/j.1001.7488.20101215.JU Y W, LI M Y, WU W H. Predictive methods of pine wilt disease in Jiangsu Province[J]. Scientia Silvae Sinicae, 2010, 46(12): 91-96.
[14] 胡秀, 吴福川, 郭微, 等. 基于MaxEnt生态学模型的檀香在中国的潜在种植区预测[J]. 林业科学, 2014, 50(5): 27-33. DOI:10.11707/j.1001-7488.20140504.HU X, WU F C, GUO W, et al. Identification of potential cultivation region for Santalum album in China by the MaxEnt ecologic niche model[J]. Scientia Silvae Sinicae, 2014, 50(5): 27-33.
[15] YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83-87.
[16] 吴鹏飞, 刘征宇, 程军, 等. 中全新世以来东亚夏季气温对轨道强迫时空响应不一致的模拟研究[J]. 地球物理学报, 2014, 57(6): 1757-1768. DOI:10.6238/cjg20140608.WU P F, LIU Z Y, CHENG J, et al. Simulation of spatial-temporal asynchronism of east Asia summer’s surface-air temperature response to orbital forcing since the Mid-Holocene[J]. Chinese Journal of Geophysics, 2014, 57(6): 1757-1768.
[17] 江志红, 张霞, 王冀. IPCC-AR4模式对中国21世纪气候变化的情景预估[J]. 地理研究, 2008, 27(4): 787-799.JIANG Z H, ZHANG X, WANG J.Projection of climate change in China in the 21st century by IPCC-AR4 Models[J]. Geographical Research, 2008, 27(4): 787-799.
[18] KOU Y, CHENG S, TIAN S, et al. The antiquity of Cyclocarya paliurus(Juglandaceae)provides new insights into the evolution of relict plants in subtropical China since the late Early Miocene[J]. Journal of Biogeography, 2016,43(2): 351-360.

Last Update: 1900-01-01