我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

NaCl胁迫对滨梅根际细菌群落多样性及优势菌群的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
49-54
Column:
研究论文
column:
2017-07-31

Article Info:/Info

Title:
Effect of NaCl stress on bacterial community diversity and core microbiome in rhizosphere and bulk soil of beach plum(Prunus maritima Marshall)
Article ID:
1000-2006(2017)04-0049-06
Author:
朱 泓王小敏黄 涛吴文龙李维林*
江苏省·中国科学院植物研究所,江苏 南京 210018
Author(s):
ZHU Hong WANG Xiaomin HUANG Tao WU Wenlong LI Weilin*
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210018, China
Keywords:
滨梅 NaCl胁迫 PCR-DGGE 土壤细菌 细菌群落多样性
Keywords:
beach plum(Prunus maritima Marshall) NaCl stress PCR-DGGE soil bacteria bacterial community diversity
Classification number :
S154.3
DOI:
10.3969/j.issn.1000-2006.2017.04.009
Document Code:
A
Abstract:
【目的】研究盐胁迫下耐盐植物根际微生物群落变化情况。【方法】基于温室盆栽试验,结合植株生长测定、土壤理化性质分析、PCR-DGGE图谱技术、香农多样性分析、主成分分析等方法,研究NaCl(0、2.9、8.8 g/L)溶液胁迫下,耐盐果树滨梅根际和非根际土壤细菌多样性变化情况及变化规律,以及滨梅生长及土壤理化性质变化。【结果】盐胁迫60 d后, 高浓度NaCl(8.8 g/L)溶液处理下滨梅根际土壤细菌16s rDNA序列变性梯度凝胶电泳(DGGE)图谱中的条带亮度、多样性指数、均匀度指数和丰富度指数最高, 非根际土壤中的条带数明显减少, 条带亮度变暗, 丰富度指数最低。对DGGE谱带进行聚类分析发现, 不同谱带间具有较高的相似性(>62%), 其中根际盐处理试验组和根际对照组可聚为一类, 非根际盐处理试验组可聚为一类, 非根际对照组单独聚为一类。选择9条主要优势条带克隆测序, 其中细菌类群为变形菌门、拟杆菌门、酸杆菌门和放线菌门。这些优势菌中除放线菌Candidatus属外,其他均对植物生长具有促进作用。对主要优势菌的变性梯度凝胶电泳(DGGE)图谱进行主成分(PCA)分析发现, 非根际细菌与根际细菌在第一主成分上完全分离, 非根际细菌均聚为一类, 而根际细菌则按亲缘关系聚类。【结论】在耐盐果树滨梅正常生长时,一定程度的盐胁迫不但未能对根际土壤微生物群落造成伤害, 反而起到一定的促进作用, 这种促进作用体现为植株根系对有益细菌生长的保护和促进, 以及对群落多样性的维持, 而非根际土壤细菌的生长和群落多样性则受到了较为严重的伤害。
Abstract:
【Objective】The environmental impacts of salinity are receiving increasing attention. However, the effects of soil salt concentrations on the structure and function of the soil microbial communities remain poorly understood. 【Method】In the present study, using plant growth measurement, soil physicochemical property analysis, PCR-DGGE technology, Shannon index and principle component analysis, a pot experiment was conducted to investigate the effects of salinity(i.e., irrigation with 0, 2.9, and 8.8 g/L NaCl solutions)on soil properties, the diversity of soil bacterial communities, and the growth of beach plum(Prunus maritima Marshall)cutting seedlings. 【Result】Neither sprout length or leaf area was significantly affected by the irrigation treatments, whereas the chlorophyll contents first increased then decreased with increasingly salt stress. The rhizosphere contained much more organic matter and total nitrogen than the bulk soil but possessed a significant lower pH. Furthermore, the cation exchange capacity of the rhizosphere soil increased significantly with increasing salinity, and the rhizosphere soil treated with 8.8 g/L NaCl yielded the greatest number of DGGE bands and band grayscales, as well as the highest diversity, richness and evenness indices. Meanwhile, the bulk soil yielded fewer bands and band grayscales, as well as lower diversity, richness and evenness indices. Cluster analysis revealed that the DGGE profiles from the same sampling site(rhizosphere or bulk)clustered together, except control from bulk soil. In addition, there were nine major bands, which were cloned, sequenced, and identified as members of the Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria. Principal component analysis revealed consistent differences in the diversity patterns of the nine major rhizosphere taxa and those of the bulk soil, and the nine major rhizosphere taxa were clustered by genetic relationship. 【Conclusion】The results of the present study suggest that the salt stress-resistance of beach plum is at least partially mediated by its rhizosphere soil microbes, even though high salt concentrations stress the bacterial community of the bulk soil.

References

[1] TEWARI S, ARORA N K.Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions[J].Current Microbiology, 2014, 69(4): 484-94. DOI: 10.1007/s00284-014-0612-x.
[2] UPADHYAY S K, SINGH J S, SAXENA A K, et al.Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions[J].Plant Biology(Stuttg), 2012, 14(4): 605-11.DOI: 10.1111/ j.1438-8677.2011.00533.x.
[3] DODD I C, PéREZ-ALFOCEA F.Microbial amelioration of crop salinity stress[J].Journal of Experimental Botany, 2012, 63(9): 3415-28.DOI: 10.1093/jxb/ers033.
[4] ZHU J K.Regulation of ion homeostasis under salt stress[J].Current Opinion in Plant Biology, 2003, 6(5): 441-445.DOI: 10.1016/S1369-5266(03)00085-2.
[5] PARVAIZ A, SATYAWATI S.Salt stress and phyto-biochemical responses of plants-a reviw[J].Plant Soil and Environment, 2008, 54(3): 89-99.
[6] 吴凤芝, 包静, 刘淑芹.盐胁迫对黄瓜根际土壤细菌群落结构和生长发育的影响[J].园艺学报, 2010, 37(5): 741-748. WU F Z, BAO J, LIU S Q.Effects of salt stress on rhizospheric soil bacterial community structure and cucumber yield[J].Acta Horticulturae Sinica, 2010, 37(5): 741-748.
[7] RATH K M, ROUSK J.Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review[J].Soil Biology & Biochemistry, 2014, 81: 108-123.DOI: 10.1016/ j.soilbio.2014.11.001.
[8] 房朋, 任丽丽, 张立涛,等.盐胁迫对杂交酸模叶片光合活性的抑制作用[J].应用生态学报, 2008, 19(10): 2137-2142. FANG P, REN L L, ZHANG L T, et al.Inhibition effects of salt stress on photosynthetic activity of Rumex K-1[J].Chinese Journal of Applied Ecology, 2008, 19(10): 2137-2142.
[9] 李志杰, 孙文彦,马卫萍, 等.盐碱土改良技术回顾与展望[J].山东农业科学, 2010, 2: 73-77.DOI:10.3969/j.issn.1001-4942.2010.02.021. LI Z J, SUN W Y, MA W P, et al.Review and prospects of improvement technology for saline-alkali soil[J].Shandong Agricultural Sciences, 2010, 2: 73-77.
[10] 王利民, 陈金林, 梁珍海, 等.盐碱土改良利用技术研究进展[J].浙江林学院学报, 2010, 27(1): 143 - 148.DOI: 10.3969/j.issn.2095-0756.2010.01.023. WANG L M, CHEN J L, LIANG Z H, et al.Research progress of improvement and utilization of saline and alkali soil[J].Journal of Zhejiang Forestry College, 2010, 27(1): 143-148.
[11] WANG L, SUN X, LI S, et al.Application of organic amendments to a coastal saline soil in north China: effects on soil physical and chemical properties and tree growth[J].PLoS One, 2014, 18, 9(2):e89185. DOI: 10.1371/journal.pone.0089185.
[12] RIEGER M.Salt stress resistance of peach and four North American Prunus species[J].Acta Horticulturae, 2001, 557: 181-192.DOI: 10.17660/ActaHortic.2001.557.24.
[13] 王利民, 陈金林, 梁珍海,等.盆栽滨梅幼苗对NaCl胁迫的响应[J].南京林业大学学报(自然科学版), 2010, 34(3): 89-92.DOI:10.3969/j.issn.1000-2006.2010.03.018. WANG L M, CHEN J L, LIANG Z H, et al.Responses of beach plum(Prunus maritima)seedlings to NaCl stress using pot culture experiments[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2010, 34(3): 89-92.
[14] 宰学明, 邵志广, 钦佩.盐胁迫对滨梅幼苗生长和渗透调节物质含量的影响[J].北方园艺, 2012(19): 12-14. ZAI X M, SHAO Z G, QIN P.Effects of NaCl stress on the growth and contents of osmotic adjustment substance of Prunus maritima seedling[J].Northern horticulture, 2012(19): 12-14.
[15] 黄涛, 朱泓, 王小敏, 等.盆栽滨梅扦插苗对NaCl胁迫的响应[J].东北林业大学学报, 2014,42(9): 102-106. HUANG T, ZHU H, WANG X M, et al.Responses of potted cutting seedlings from beach plum(Prunus maritima)to NaCl stress[J].Journal of northeast forestry university, 2014, 42(9): 102-106.
[16] 朱泓, 黄涛, 刘勇军,等.NaCl胁迫对滨梅扦插苗生物量和水分积累的影响[J].西北植物学报, 2015, 35(2): 356-363.DOI: 10.7606/j.issn.1000-4025.2015.01.0001. ZHU H, HUANG T, LIU Y J, et al.Growth and water content of beach plum cutting seedlings under salt stress[J].Acta Botanica Boreali-occidentalia Sinica, 2015, 35(2): 356-363.
[17] 李冬顺, 杨劲松, 周静.黄淮海平原盐渍土壤浸提液电导率的测定及其换算[J].土壤通报, 1996,27(6): 285-287. LI D S, YANG J S, ZHOU J.Estimation and conversion of electric conductivity in saline soil leaching liqor of Huanghuaihai plain[J].Chinese journal of soil science, 1996, 27(6): 285-287.
[18] 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社, 2005: 25-177.
[19] YU Z T, MORRISON M.Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis[J].Apply Environment Microbiology, 2004, 70(18): 4800-4806.DOI: 10.1128/AEM.70.8.4800-4806.2004.
[20] BELL T, AGER D, SONG J I, et al.Larger islands house more bacterial taxa[J].Science, 2005, 308(5730): 1884-1884.DOI: 10.1126/SCIENCE.1111318.
[21] 艾超, 孙静文, 王秀斌,等.植物根际沉积与土壤微生物关系研究进展[J].植物营养与肥料学报, 2015,21(5): 1343-1351.DOI:10.11674/zwyf.2015.0530. AI C, SUN J W, WANG X B, et al.Advances in the study of the relationship between plantrhizodeposition and soil microorganism[J].Journal of Plant Nutrition and Fertilizer, 2015,21(5): 1343-1351.
[22] JORQUERA M A, SHAHAROONA B, NADEEM S M, et al.Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush(Larrea tridentata)[J].Microbial Ecology, 2012, 64(4):1008-1017.DOI: 10.1007/s00248-012-0071-5.
[23] KIELAK A M, CIPRIANO M A, KURAMAE E E.Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria[J].Archives of Microbiology, 2016, 198(10):1-7.DOI: 10.1007/s00203-016- 1260-2.
[24] CHAKRAPONG R, RUNGROCH S, BENJAVAN R, et al.Untapped endophytic colonization and plant growth-promoting potential of the genus novosphingobium to optimize rice cultivation[J].Microbes and Environments 2017, 32(1): 84-87.DOI: 10.1264/jsme2.ME16112.
[25] ADHIKARI T B, JOSEPH C M, YANG G, et al.Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice[J].Canadian Journal of Microbiology, 2001, 47(10):916-924.DOI: 10.1139/cjm-47-10-916.
[26] MISHRA S K, TAFT W H, PUTNAM A R, et al.Plant growth regulatory metabolites from novel actinomycetes[J].Journal of Plant Growth Regulation, 1987, 6(2):75-83.DOI: 10.1007/BF02026457.
[27] RODRIGO M, PAOLINA G, RAAIJMAKERS J M.The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J].Fems Microbiology Reviews, 2013, 37(5): 634-663. DOI: 10.1111/1574-6976.12028.
[28] NIHORIMBERE V, ONGENA M, SMARGIASSI M, et al.Beneficial effect of the rhizosphere microbial community for plant growth and health[J].Biotechnologie Agronomie Société Et Environnement, 2011, 15(2): 327-337.
[29] DENNIS P G, MILLER A J, HIRSCH P R.Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities[J]? Fems Microbiology Ecology, 2010, 72(3): 313-327.DOI: 10.1111/j.1574-6941.2010.00860.x.
[30] LAURENT P, RAAIJMAKERS J M, PHILIPPE L, et al.Going back to the roots: the microbial ecology of the rhizosphere[J].Fems Microbiology Letters, 2001, 202(2): 171-176. DOI: 10.1038/nrmicro3109.
[31] HUANG X F, JACQUELINE M C, KENNETH F R, et al.Rhizosphere interactions: root exudates, microbes, and microbial communities[J].Botany-botanique, 2013, 92(92): 281-289.DOI: 10.1139/cjb-2013-0225.
[32] BAUMANN K, DIGNAC M F, RUMPEL C, et al. Soil microbial diversity affects soil organic matter decomposition in a siltygrassland soil[J]. Biogeochemistry 2013, 114(1-3):201-212. DOI: 10.1007/s10533-012-9800-6.
[33] PHILIPPOT L, SPOR A, HéNAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil[J]. ISME J 2013, 7(8):1609-1619. DOI: 10.1038/ ismej.2013.34.
[34] 刘旭, 迟春明.南疆盐渍土饱和浸提液与土水比1:5浸提液电导率换算关系[J].江苏农业科学, 2015,43(1): 289-291. LIU X, CHI C M.Estimation and conversion of electric conductivity in saline soil leaching liqor of south Xinjiang[J].Jiangsu Nongye Kexue, 2015,43(1): 289-291.
[35] 马晓梅, 尹林克, 陈理.塔里木河干流胡杨和柽柳根际土壤微生物及其垂直分布[J].干旱区研究, 2008, 25(2): 183-189. MA X M, YIN L K, CHEN L.Study on vertical distribution of microorganiss in rhizosphere of Populous euphratica and Tamarix sp.in the lower reaches of the Tarim river, Xinjiang[J].Arid zone research, 2008, 25(2): 183-189.
[36] 林学政, 陈靠山, 何培青, 等.种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响[J].生态学报, 2006, 26(3): 801-807.DOI:10.3321/j.issn:1000-0933.2006.03.023. LIN X Z, CHEN K S, HE P Q, et al.The effects of Suaeda salsa L.planting on the soil microflora in coastal saline soil[J].Acta ecologica sinica, 2006, 26(3): 801-807.
[37] 董哲, 魏天兴, 石鑫,等.两种不同生长状况沙棘根系分泌物差异分析[J].四川农业大学学报, 2012, 30(2): 195-200.DOI:10.3969/j.issn.1000-2650.2012.02.014. DONG Z, WEI T X, SHI X, et al.Main compounds variation of root exudates in hippophae rhamnoides with different grow states[J].Sichuan Nongye Daxue Xuebao, 2012, 30(2): 195-200.
[38] 张锡洲, 李廷轩, 王永东.植物生长环境与根系分泌物的关系[J].土壤通报, 2007, 38(4): 785-789.DOI:10.3321/j.issn:0564-3945.2007.04.034. ZHANG X Z, LI T X, WANG Y D.Relationship between growth environment and root exudates of plants: a review[J].Chinese Journal of Soil Science, 2007, 38(4): 785-789.

Memo

Memo:
收稿日期:2016-05-25 修回日期:2017-04-20
基金项目:国家海洋公益性行业科研专项项目(201505023); 江苏省农业“三新”工程项目(SXGC(2015)332); 江苏省木本油料高效栽培示范项目(LYSX[2015]14); 江苏省农业科技自主创新项目(CX(15)1026)
第一作者:朱泓(gogen@yeah.net),博士。*通信作者:李维林(lwlcnbg@mail.cnbg.net),研究员。
引文格式:朱泓,王小敏,黄涛,等. NaCl胁迫对滨梅根际细菌群落多样性及优势菌群的影响[J]. 南京林业大学学报(自然科学版),2017,41(4):49-54.
Last Update: 1900-01-01