我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

稀土铈对太子参生长和光合特性的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
71-79
Column:
研究论文
column:
2017-07-31

Article Info:/Info

Title:
Effects of cerium nitrate on growth and photosynthetic characteristics of Pseudostellaria heterophylla
Article ID:
1000-2006(2017)04-0071-09
Author:
马迎莉谷 慧张雨峰代 丽李 静江方蕾夏大娟谢寅峰*
南方现代林业协同创新中心,南京林业大学生物与环境学院,江苏 南京 210037
Author(s):
MA Yingli GU Hui ZHANG Yufeng DAI Li LI Jing JIANG Fanglei XIA Dajuan XIE Yinfeng*
Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
太子参 稀土 硝酸铈 生长指标 光合特性
Keywords:
Pseudostellaria heterophylla rare earth cerium nitrate growth photosynthetic characteristics
Classification number :
Q945.78
DOI:
10.3969/j.issn.1000-2006.2017.04.012
Document Code:
A
Abstract:
【目的】探究稀土铈对太子参生长和光合特性的影响,以期提高太子参产量,并通过探讨铈对太子参的增产效应及其机制,为太子参高效栽培提供理论和应用依据。【方法】通过不同质量浓度稀土铈(CK、25、100、400 和700 mg/L)处理后,对太子参生长指标和光合特性进行测定,并进行数据分析。【结果】随着铈质量浓度的增加,太子参植株苗高和地径相对生长量、块根长、块根直径、块根鲜质量及干质量、单位面积产量,以及叶片叶绿素和类胡萝卜素总量均表现先增加后下降的趋势,呈明显的浓度效应,以400 mg/L处理效果最佳,其中单位面积块根鲜、干质量产量分别比对照提高42.59%和41.83%。适当质量浓度稀土铈处理能显著提高光合日变化参数净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)日均值,而使胞间二氧化碳浓度(Ci)降低,有效缓解光合“午休”现象。试验期间,PSⅡ最大光化学效率(Fv/Fm)、PSⅡ有效光化学效率(Fv'/Fm')、PSⅡ实际光化学效率(ΦPSⅡ)和光化学淬灭系数(CPQC)随着稀土铈质量浓度的增加均呈现先升后降的趋势,非光化学淬灭系数(CNPQ)则呈相反的趋势。相关分析表明稀土处理下苗高、地径与Pn 呈极显著正相关,Pn与叶绿素含量、类胡萝卜素含量、GsΦPSⅡFv'/Fm'呈显著正相关,而与CiCNPQ成负相关。灰色关联分析表明,色素含量、ΦPSⅡFv'/Fm'和CPQC是制约太子参光合作用的主要因素。【结论】适当质量浓度的稀土铈处理能有效促进太子参生长、提高块根产量,改善光合性能。其对太子参光合作用的调节作用与促进光能吸收、转换、提高光化学效率、缓解光抑制有关。与气孔因素相比,非气孔限制因子的改善是其缓解光合“午休”现象的主要原因。
Abstract:
【Objective】In order to improve the yield of the traditional Chinese medicinal plant Pseudostellaria heterophylla and to establish a theoretical and practical basis for its high-yield cultivation, the present study investigated the stimulatory effects of cerium nitrate on photosynthesis and root tuber yield of the plant. 【Method】The effects of cerium nitrate on the growth indices and photosynthetic parameters of P. heterophylla were analyzed. 【Result】The relative growth yield of seedling height and ground diameter, root tuber length, diameter, fresh weight, dry weight, yield per unit area, and chlorophyll and carotenoid contents initially increased and then decreased in response to increasing cerium nitrate concentrations. In particular, the changes induced by the optimal cerium nitrate concentration(400 mg/L)were statistically significant. In response to cerium nitrate treatment, the fresh and dry root tuber yields per unit area increased significantly by 42.59% and 41.83%, respectively, over that of the control treatment, and appropriate cerium nitrate concentrations also alleviated midday photosynthetic depression,improved the mean net photosynthetic rate(Pn), stomatal conductance(Gs), and transpiration rate(Tr)values associated with diurnal variation in photosynthetic parameters, and reduced intercellular CO2 concentration(Ci). During the experiment, the chlorophyll fluorescence parameters the maximal efficiency of PSⅡ photochemistry(Fv/Fm), the effective efficiency of PSⅡ photochemistry(Fv'/Fm'), the actual efficiency of PSⅡ photochemistry(ΦPSⅡ), and photochemical quenching(CPQC)initially increased and then decreased with increasing cerium nitrate concentrations, whereas non-photochemical quenching(CNPQ)exhibited a contrasting trend. Pn exhibited a significant positive correlation with seedling height, ground diameter, chlorophyll and carotenoid contents, Gs, ΦPSⅡ and Fv'/Fm', but a negative correlation with Ci and CNPQ. And grey correlation analysis indicated that the photosynthetic pigments, ΦPSⅡ, Fv'/Fm' and CPQC were the primary factors impacting photosynthesis. 【Conclusion】The present study demonstrates that appropriate concentrations of cerium nitrate improve the growth, root tuber yield and photosynthetic characteristics of P. heterophylla,and that the regulatory effect of cerium nitrate on photosynthesis is related to the promotion of light energy absorption and conversion, improvement in photochemical efficiency, and alleviation of photoinhibition. Regarding stomatal factors, the improvement of the non-stomatal limitation factor is the primary factor mitigating midday photosynthetic depression.

References

[1] WU L K, CHEN J, WU H M, et al. Insights into the regulation of rhizosphere bacterial communities by application of bio-organic fertilizer in Pseudostellaria heterophylla monoculture regime[J]. Frontiers in Microbiology, 2016(7):1788. DOI: 10.3389/fmicb.2016.01788.
[2] PANG W S, LIN S D, DAI Q W. Antitussive activity of Pseudostellaria heterophylla(Miq.)Pax extracts and improvement in lung function via adjustment of multi-cytokine levels[J]. Molecules, 2011, 16(4): 3360-3370. DOI:10.3390/molecules16043360.
[3] 姚勇,孙允.富硒太子参的开发利用[J].安徽科技,2005(4):24-25.DOI:10.3969/j.issn.1007-7855.2005.04.015. YAO Y, SUN Y. The development and utilization of se-enriched Pseudostellaria heterophylla[J]. Anhui Science & Technology, 2005(4): 24-25.
[4] 褚书豪,汪小彩,冯良.太子参化学成分及其药理作用研究进展[J].光明中医,2016(7):1047-1048. DOI: 10. 3969/j. Issn. 1003-8914. 2016. 07. 071. CHU S H, WANG X C, FENG L. Research progress on chemical constituents and pharmacological effects of Radix pseudostellariae[J]. Guangming Journal of Chinese Medicine, 2016(7):1047-1048.
[5] ZHANG L Y, GUO Z W, GAO H F, et al. Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture system[J].Journal of Microbiology and Biotechnology,2016,26(12):2159-2170. DOI:10.4014/jmb. 1607.07073.
[6] HU J, PANG W S, CHEN J L. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla[J]. MC Complementary and Alternative Medicine, 2013, 13: 267.DOI:10.1186/ 1472-6882-13-267.
[7] WONG C K, LEUNG K N, FUNG K P, et al. The immunostimulating activities of anti-tumor polysaccharides from Pseudostellaria heterophylla[J]. Immunopharmacology, 1994, 28(1): 47-54.DOI:10.1016/0162-3109(94)90038-8.
[8] WANG Z, LIAO S G, HE Y, et al. Protective effects of fractions from Pseudostellaria heterophylla against cobalt chloride-induced hypoxic injury in H9c2 cell[J]. Journal of Ethnopharmacology, 2013, 147(2): 540-545. DOI:10.1016/j.jep.2013.03.053.
[9] HIROSHI M, TAKASHI K, HIDEYUKI K, et al. Pscudostellarins A-C, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla[J]. Tetrahedron, 1994, 50(23): 6797-6804. DOI:10.1016/S0040-4020(01)81333-8.
[10] 王小玲,刘腾云,高柱,等. 稀土元素对作物生长及作物品质影响的研究进展[J]. 核农学报, 2016,30(6): 1240-1247. DOI: 10. 11869 / j. Issn. 100-8551. 2016. 06. 1240. WANG X L, LIU T Y,GAO Z, et,al. A review of rare earth elements on crop growth and quality[J]. Journal of Nuclear Agricultural Sciences, 2016,30(6): 1240-1247.
[11] 任艳军,马建军.不同季节叶面喷施镧、铈对油菜产量及品质的影响[J].中国稀土学报, 2013(2):242-248. DOI:10.11785/S1000-4343.20130218. REN Y J, MA J J. Effects of spray application of lanthanum and cerium on rape yield and quality based on different seasons[J]. Journal of Rare Earths, 2013(2): 242-248.
[12] XIE Y F, LI Y, LIU N N, et al. Effects of cerium nitrate on the growth and physiological characteristics in Cyclocarya paliurus seedlings[J]. Journal of Rare Earths, 2015, 33(8): 898-904.
[13] 宋雪梅,夏超,廖洋,等.外源稀土Ce3+对凤眼莲钙相关光合作用的影响[J]. 中国环境科学, 2014,34(9): 2362-2367. SONG X M, XIA C, LIAO Y, et al. Influences of rare earths(Ce3+)on calcium-regulated photosynthesis in Eichhornia crassipes[J]. China Environmental Science, 2014,34(9):2362-2367.
[14] PERALTA-VIDEA J R, HERNANDEZ-VIEZCAS J A, ZHAO L, et al. Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants[J]. Plant Physiology and Biochemistry, 2014(80): 128-135.DOI:10.1016/j.plaphy.2014.03.028.
[15] REN Y J, REN X J, MA J J, et al. Effects of mixed rare earth fertilizer on yield and nutrient quality of leafy vegetables during different seasons[J]. Journal of Rare Earths, 2016, 34(6): 638-643.DOI:10.1016/S1002-0721(16)60073-X.
[16] 闫小红,周兵,王宁,等. 基于光响应机理模型的3种草本植物光合特性差异解析[J]. 南京林业大学学报(自然科学版),2016,40(3):63-69. DOI: 10. 3969 / j. Issn. 1000-2006. 2016. 03. 011. YAN X H,ZHOU B, WANG N,et al. Differences of photosynthetic characteristics based on a mechanistic model of light-response for three herbaceous plants[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016,40(3):63-69.
[17] REZANKA T, KAINEDER K, MEZRICKY D, et al. The effect of lanthanides on photosynthesis, growth and chlorophyll profile of the green alga Desmodesmus quadricauda[J]. Photosynth Res, 2016(130): 335-346.DOI:10.1007/s11120-016-0263-9.
[18] 张轩波. 酸雨胁迫下镧在辣根根细胞积累及其对钾离子通道的影响[D].无锡:江南大学,2016. ZHANG X B.Accumulation of lanthanum in horseradish root cells under acid rain stress and action mechanism to potassium channel[D].Wuxi:Jiangnan University, 2016.
[19] 邱念伟,马宗琪,王凤德,等. 一种测定植物相对生长量的方法[J]. 山东科学, 2007,20(2):24-28. DOI: 10.3969/j.issn.1002-4026.2007.02.006. QIU N W, MA Z Q, WANG F D, et al. A method for mensurating plant relative growth yield[J]. Shandong Science, 2007, 20(2): 24-28.
[20] JENSEN A. Chlorophylls and carotenoids[C]// HELLEBUST J A, Craigie J S. Handbook of phycological methods: physiological and biochemical methods. Cambridge: Cambridge University Press, 1978: 61-69.
[21] 马文清,郭强,邱文武,等.利用灰色关联分析法评价甘蔗自育新品系[J].广东农业科学, 2014(5):71-73,78. DOI:10.3969/j.issn.1004-874X.2014.05.017. MA W Q, GUO Q, QIU W W, et al. Comprehensive evaluation on new self-cultivated sugarcane lines by grey relational analysis[J]. Guangdong Agricultural Sciences, 2014(5): 71-73,78.
[22] XU X K, ZHU W Z, WANG Z J, et al. Distribution of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer[J]. Science of the Total Environment, 2002, 293: 97-105. DOI:10.1016/S0048-9697(01)01150-0.
[23] OLIVARES E, AGUIAR G, COLONNELLO G. Rare earth elements in vascular plants: a review[J]. Interciencia, 2011, 36(5): 331-340.
[24] DIATLOFF E, SMITH F W, ASHER C J. Effects of lanthanum and cerium on the growth and mineral nutrition of corn and mungbean[J]. Annals of Botany, 2008, 101(7): 971.DOI:10.1093/aob/mcn021.
[25] GE F, WANG X D, ZHAO B, et al. Effects of rare earth elements on the growth of Arnebia euchroma cells and the biosynthesis of shikonin[J]. Plant Growth Regulation, 2006, 48: 283.DOI:10.1007/s10725-006-0004-8.
[26] XIE Y F, CAI X L, LIU W L, et al. Effects of lanthanum nitrate on growth and chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress[J]. Journal of Rare Earths, 2013, 31(8): 823-829.DOI:10.1016/S1002-0721(12)60365-2.
[27] 谢寅峰,徐丽. 稀土等对霍山石斛组培苗石斛多糖含量的影响[J]. 南京林业大学学报(自然科学版), 2008, 32(6): 39-42. DOI:10.3969/j.issn.1000-2006.2008.06.009. XIE Y F, XU L. Effects of rare earth and so on on polysaccharides content of Dendrobium huoshanense plantlet in vitro[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(6): 39-42.
[28] HE Y W, LOH C S. Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana[J]. Plant Science, 2000, 159(1): 117-124.DOI:10.1016/S0168-9452(00)00338-1.
[29] 王雯.镧和酸雨对不同生育期水稻光合作用复合影响[D].无锡:江南大学,2014. WANG W.Combined effects of lanthanum ion and acid rain on photosynthesis in rice at different growth stages[D].Wuxi:Jiangnan University,2014.
[30] 赵倩倩, 刘慧, 王亚喆, 等.稀土元素在植物学中的研究进展[J].食品研究与开发, 2015, 36(19): 176-178. DOI:10.3969/j.issn.1005-6521.2015.19.046. ZHAO Q Q, LIU H,WANG Y Z, et al.A review on rare earth elements in botany[J]. Food Research and Development,2015,36(19):176-178.
[31] 熊炳昆,陈蓬,王锋.稀土农林研究与应用[M].北京:冶金工业出版社,2000:124.
[32] SCHROEDER W A, JOHNSON E A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma[J]. Journal Biological Chemistry, 1995(270): 18374-18379.DOI:10.1074/jbc.270.31.18374.
[33] 姬慧娟,贾会霞, 章小铃,等.干旱胁迫对红皮柳光合特性日变化及生长的影响[J].南京林业大学学报(自然科学版),2016,40(6):41-46.DOI:10.3969/j.issn.1000-2006.2016.06.007. JI H J, JIA H X, ZHANG X L,et al.Effect of drought stress on photosynthetic diurnal course and growth of Salix purpurea[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2016,40(6):41-46.
[34] 梁婵娟.稀土铈对UV-B辐射胁迫下植物光合作用光反应的影响研究[D].无锡:江南大学,2006. LIANG C J. Effects of cerium on photosynthetic light reaction in plants exposed to supplementary ultraviolet-B radiation[D].Wuxi: Jiangnan University, 2006.
[35] HONG F S, LIU C, ZHENG L,et al. Formation of complexes of Rubisco-Rubisco activase from La3+, Ce3+ treatment spinach[J]. Science in China Series B-chemistry, 2005,48(1):67-74.DOI:10.1007/BF02990915.
[36] 陈为钧,顾月华,王圣兵,等.镧对烟草RuBPcase活性影响的研究[J]. 中国稀土学报, 2000,18(3): 258-261. DOI:10.3321/j.issn:1000-4343.2000.03.015. CHEN W J, GU Y H, WANG S B, et al. Effect of lanthanum on RuBPcase activity of tobacco seedlings[J]. Journal of the Chinese Rare Earth Society, 2000,18(3): 258-261.

Memo

Memo:
收稿日期:2016-08-10 修回日期:2017-03-27
基金项目:江苏高校优势学科建设工程资助项目(PAPD); 南京林业大学大学生科技创新项目(2015sjcx190); 南京林业大学博士学位论文创新基金项目; 国家级大学生科技创新项目(201410298001Z)
第一作者:马迎莉(yli_ma@163.com),博士生。*通信作者:谢寅峰(xxyy@njfu.edu.cn),教授。
引文格式:马迎莉,谷慧,张雨峰,等. 稀土铈对太子参生长和光合特性的影响[J]. 南京林业大学学报(自然科学版),2017,41(4):71-79.
Last Update: 1900-01-01