我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

景观交错对毛竹林生物量的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
95-100
Column:
研究论文
column:
2017-07-31

Article Info:/Info

Title:
The effect of landscape econtone on biomass of moso bamboo
Article ID:
1000-2006(2017)04-0095-06
Author:
陈霜霜秦 鹏顾 琪王舒悰洪 为时培建王福升*
南方现代林业协同创新中心,南京林业大学竹类研究所,江苏 南京 210037
Author(s):
CHEN ShuangshuangQIN PengGU QiWANG ShucongHONG WeiSHI PeijianWANG Fusheng*
Co-Innovation Center for the Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
Keywords:
景观交错带 毛竹林 Kruskal-Wallis检验 平均胸径 土壤速效养分
Keywords:
landscape ecotone moso bamboo forest Kruskal-Wallis test mean DBH soil available nutrients
Classification number :
S718; Q143+.1
DOI:
10.3969/j.issn.1000-2006.2017.04.015
Document Code:
A
Abstract:
【目的】探究景观交错及不同景观交错类型对毛竹林生物量的影响。【方法】以福建省建瓯市3座存在毛竹和树木景观交错区域的样山和1座毛竹纯林样山为研究对象,在毛竹与树木的交错地带,以及距离交错地带10 m处分别划定两条样带,每条样带设置3个样方,调查了样地内毛竹的胸径及林下土壤养分,运用Kruskal-Wallis统计检验每座样山不同样带间毛竹平均胸径是否存在显著性差异。【结果】①在相同取样面积下,不同景观交错类型的毛竹林生物量均高于毛竹纯林的生物量,尤其在景观交错带内,比同海拔水平毛竹纯林类型的高11.09%~27.72%,且山体上位样带内毛竹林的生物量均比下位样带的高,这与毛竹纯林上下位样带内毛竹林的生物量对比相反; ②不同景观交错类型的样带间毛竹林生物量差异显著,毛竹纯林类型的样带间差异不显著; ③4座样山的样带间土壤养分差异不显著但存在一定的变化趋势,多数为山体上位样带的生物量低于下位样带,与景观交错类型的毛竹林生物量在样带间的分布趋势相反。【结论】植物的景观交错有助于增加毛竹林生物量; 不同景观交错类型对毛竹林生物量的影响均显著; 不同景观交错类型中土壤养分含量对毛竹生物量没有显著性影响,毛竹林的生物量高于毛竹纯林,与其交错林分的林分类型、林分结构及人为经营措施有关。
Abstract:
【Objective】To examine whether the biomass of moso bamboo(Phyllostachys edulis)in an ecotone is different from that of a non-ecotone.【Method】Study sites were selected on three mountains where an interface between moso bamboo and trees exists, and one mountain with only a single moso bamboo forest. Three plots were randomly chosen in either sampling belt in the interface and in the belt area, with 10 m distance from the interface below. The diameters at breast height(DBH)of moso bamboo on the sampling belts were measured, and the relevant soil nutrients were analyzed. The Kruskal-Wallis statistic was used to test whether there was a significant difference in the mean DBH of moso bamboo between two sampling belts(i.e., the interface and the belt area below).【Result】The results showed that: ① The biomass of moso bamboo in the three landscape ecotone types was significantly higher than that in the moso bamboo plantation, especially in the upper transects, biomasses were 11.09%-27.72% higher at the same altitude in the ecotone transects than that in the plantation transect. The biomass in the upper transects of landscape ecotone types was higher than that in the lower transects, in contrast to the results for the moso bamboo plantation. ② The differences were significant in two transects of the three types of landscape ecotone, but not significant in the moso bamboo plantation. ③ There were no significant differences in soil nutrients between two transects of the four mountains. However, there was an overalltrend of soil nutrients in upper slopes being lower than those in lower slopes, contrasting the trend in transects of moso bamboo biomass in the three landscape ecotone types.【Conclusion】Landscape ecotone has a positive effect on the biomass of moso bamboo, and different landscape ecotone types have significant effects on the biomass of moso bamboo. However, the extent of these effects was different. Regardless of the level of soil nutrient content, the biomass of moso bamboo in three types of landscape ecotones was higher than that of the moso bamboo plantation owing to the effects of stand type, stand structure, and human management policies.

References

[1] GOSE J R. Ecotone hierarchies[J]. Ecological Applications, 1993, 3(3): 369-376. DOI: 10.2307/1941905.
[2] HOLLAND M M, RISSER P G. The role of landscape boundaries in the management and restoration of changing environments: introduction[M] Ecotones US: Springer Inc., 1991: 1-7.
[3] BAKER T P, JORDAN G J, STEEL E A, et al. Microclimate through space and time: microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales[J]. Forest Ecology and Management, 2014, 334: 174-184. DOI: 10.1016/j.foreco.2014.09.008.
[4] PIESSENS K, HONNAY O, DEVLAEMINCK R, et al. Biotic and abiotic edge effects in highly fragmented heathlands adjacent to cropland and forest[J]. Agriculture Ecosystems & Environment, 2006, 114(2): 335-342. DOI: 10.1016/j.agee.2005.11.016.
[5] 苏晓飞, 袁金凤, 胡广, 等. 千岛湖陆桥岛屿植物群落结构的边缘效应[J]. 应用生态学报, 2014, 25(1): 77-84. SU X F, YUAN J F, HU G, et al. Edge effect of the plant community structure on land-bridge islands in the Thousand Island Lake[J]. Chinese Biodiversity, 2014, 25(1): 77-84.
[6] MA M, HIETALA R, KUUSSAARI M, et al. Impacts of edge density of field patches on plant species richness and community turnover among margin habitats in agricultural landscapes[J]. Ecological Indicators, 2013, 31(8): 25-34. DOI: 10.1016/j.ecolind.2012.07.012.
[7] 王国华, 李际平, 赵春燕. 基于层次分析法的森林景观边缘效应强度分析[J]. 中南林业科技大学学报, 2012, 32(4): 110-116. DOI:10.3969/j.issn.1673-923X.2012.04.023. WANG G H, LI J P, ZHAO C Y. Analysis of forest landscape edge effect intensity based on analytic hierarchy process[J]. Journal of Central South University of Forestry & Technology, 2012, 32(4): 110-116.
[8] 王如松, 马世骏. 边缘效应及其在经济生态学中的应用[J]. 生态学杂志, 1985(2): 38-42. WANG R S, MA S J. Edge effect and its application in economic ecology[J]. Journal of Ecology, 1985(2): 38-42.
[9] 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1): 1-2. DOI: 10.13466/j.cnki.lygyzl.2014.01.001. State Forestry Administration. The result of eighth national forest resources inventory[J]. Forest Resources Management, 2014(1): 1-2.
[10] CHENG X F, SHI P J, HUI C, et al. An optimal proportion of mixing broad-leaved forest for enhancing the effective productivity of moso bamboo[J]. Ecology & Evolution, 2015, 5(8): 1576-1584. DOI: 10.1002/ece3.1446.
[11] SHI P J, MEN X Y, SANDHU H S, et al. The “general” ontogenetic growth model is inapplicable to crop growth[J]. Ecological Modelling, 2013, 266:1-9. DOI: 10.1016/j.ecolmodel.2013.06.025.
[12] SHI P J, ISHIKAWA T, SANDHU H S, et al. On the 3/4-exponent von Bertalanffy equation for ontogenetic growth[J]. Ecological Modelling, 2014, 276:23-28. DOI: 10.1016/j.ecolmodel.2013.12.020.
[13] 薛毅, 陈立萍. 统计建模与R软件[M]. 北京: 清华大学出版社, 2007: 348-350. XUE Y, CHEN L P. Statistical modeling and R software[M]. Beijing: Tsinghua University Press, 2007: 348-350.
[14] R Development Core Team. R: a language and environment for statistical computing[Z]. Vienna, Austria: R Foundation for Statistical Computing, 2013.
[15] 杨宽, 王福升, 徐爱珍, 等. 上阔下竹混交林对竹林土壤养分的影响[J]. 上海农业学报, 2015(3): 82-85. DOI: 10.15955/j.issn1000.3924.2015.03.1. YANG K, WANG F S, XU A Z, et al. Effect of Phyllostachys edulis and broad leaved mixed forest on soil nutrient content[J]. Acta Agriculturae Shanghai, 2015(3): 82-85.
[16] 周芳纯. 竹林培育学[M]. 北京: 中国林业出版社, 1998: 65-73. ZHOU F C. Bamboo cultivation[M]. Beijing: Chinese Forestry Press, 1998: 65-73.
[17] 程小飞. 上阔下竹复合生态系统类型划分的研究[D]. 南京: 南京林业大学, 2015. CHENG X F. Type classification of the broad-leaved forest in upper slope and bamboo plantation in lower slope compound ecosystem[D]. Nanjing: Nanjing Forestry University, 2015.
[18] 霍治国. 山区毛竹气候生产力模式研究[J]. 生态学报, 1990, 10(4): 381-383. DOI: 10.3321/j.issn:1000-0933.1990.04.003. HUO Z G. A study on the model of climatic productivity of bamboo in the mountainous area[J]. Acta Ecologica Sinica, 1990, 10(4): 381-383.
[19] 刘广路. 毛竹林长期生产力保持机制研究[D]. 北京:中国林业科学研究院, 2009. LIU G L. Study on the mechanism of maintaining long-term productivity of bamboo forest[D]. Beijing: Chinese Academy of Forestry, 2009.
[20] 顾琪, 程小飞, 黄伟亮, 等. 上阔下竹与其交错经营对毛竹生产力的影响[J]. 竹子研究汇刊, 2015, 34(3): 30-34. DOI: 10.3969/j.issn.1000-6567.2015.03.006. GU Q, CHENG X F, HUANG W L, et al. Pattern of broad-leaved forests on the upper slop on the productivity of moso bamboo on the lower slope[J]. Journal of Bamboo Research, 2015, 34(3): 30-34.
[21] 王意锟, 金爱武, 朱强根,等. 施肥对毛竹种群不同年龄分株间胸径大小关系的影响[J]. 植物生态学报, 2014, 38(3): 289-297. DOI: 10.3724/SP.J.1258.2014.00026. WANG Y K, JIN A W, ZHU Q G, et al. Effects of fertilization on the relations of diameter at breast height between different-aged ramets of Phyllostachys edulis population[J]. Forest Ecology and Management, 2014, 38(3): 289-297.
[22] 黄礼祥. 坡位对毛竹生长的影响[J]. 广东林业科技, 2005, 21(1): 66-68. DOI: 10.3969/j.issn.1006-4427.2005. 01.017. HUANG L X. Effect of vertical location on the growth of Phyllostachys pubescens [J]. Guangdong Forestry Science and Technology, 2005, 21(1): 66-68.
[23] 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J].植物生态学报, 2012, 36(6): 587-596. DOI:10.3724/SP.J.1258.2012.00587. GE J, XING F. A review of adaptive strategies of clonal plants to interspecific competition[J]. Chinese Journal of Plant Ecology, 2012, 36(6): 587-596.
[24] 杞金华, 章永江, 张一平, 等. 哀牢山常绿阔叶林水源涵养功能及其在应对西南干旱中的作用[J]. 生态学报, 2012, 32(6): 1692-1702. DOI: 10.5846 /stxb201103030259. QI J H, ZHANG Y J, ZHANG Y P, et al. Water-holding capacity of an evergreen broadleaf forest in Ailao Mountain and its functions in mitigating the effects of southwest China drought[J]. Acta Ecologica Sinica, 2012, 32(6): 1692-1702.
[25] 郭清和, 康文星.杉木人工林的温湿效应[J]. 中南林学院学报, 2005, 25(3): 12-17. DOI: 10.3969/j.issn.1673923X.2005.03.003. GUO Q H, KANG W X. Efficiency of temperature and humidity in the Chinese fir plantation[J]. Journal of Central South Forestry University, 2005, 25(3): 12-17.
[26] 汪阳东, 韦德煌. 气象因素对毛竹秆形生长变异的影响[J]. 竹子研究汇刊, 2002, 21(1): 46-52. DOI: 10.3969/j.issn.10006567.2002.01.010 WANG Y D, WEI D H. The effect of weather factors on the culm growth of moso bamboo[J]. Journal of Bamboo Research, 2002, 21(1): 46-52.
[27] WU J, LIU Z, WANG X, et al. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China[J]. Functional Ecology, 2011, 25(4): 921-931. DOI: 10.1111/j.1365-2435.2011.01845.x.
[28] 陈辉, 何方. 锥栗人工林结果初期养分动态特征及其模拟[J]. 应用生态学报, 2002, 13(5): 533-538. DOI: 10.3321/j.issn:1001-9332.2002.05.005. CHEN H, HE F. Dynamic characteristics of nutrient elements in Castanea henryi plantation at beginning of fructification and its simulation[J]. Chinese Biodiversity, 2002, 13(5): 533-538.
[29] 王永壮, 陈欣, 史奕. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 2013, 24(1): 260-268. WANG Y Z, CHEN X, SHI Y. Phosphorus availability in cropland soils of China and related affecting factors[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 260-268.
[30] 郜文军, 王印传, 霍习良, 等. 山区小流域不同海拔和坡位土壤养分分布及相关性分析[J]. 中国农学通报, 2008, 24(3): 248-252. GAO W J, WANG Y C, HUO X L, et al. The distribution of soil nutrients and correlation analysis in different altitudes and slope positions in mountain watershed[J]. Chinese Agricultural Science Bulletin, 2008, 24(3): 248-252.
[31] 侯慧峰. 闽北山地上位阔叶林对毛竹林生产力的影响[D]. 南京: 南京林业大学, 2007. HOU H F. Effects of upside broadleaf forest on the productivity of Phyllostachys heterocycla var. pubeseens forests of mountain areas in Northern Fujian Province[D]. Nanjing: Nanjing Forestry University, 2007.
[32] 金爱武, 吕玉龙, 潘春霞, 等. 竹林土壤特性空间变异的研究综述[J]. 林业科技开发, 2007, 21(5): 5-8. DOI: 10.3969/j.issn.1000-8101.2007.05.002. JIN A W, LU Y L, PAN C X, et al. Review on spatial variability of soil properties in bamboo plantations[J]. China Forestry Science and Technology, 2007, 21(5): 5-8.

Memo

Memo:
收稿日期:2016-06-12 修回日期:2017-04-13
基金项目:“十二五”国家科技支撑计划(2012BAD23B04); 国家自然科学基金项目(31400348); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:陈霜霜(sschenfj@gmail.com)。*通信作者:王福升(fswang@njfu.edu.cn),副教授。
引文格式:陈霜霜,秦鹏,顾琪,等. 景观交错对毛竹林生物量的影响[J]. 南京林业大学学报(自然科学版),2017,41(4):95-100.
Last Update: 1900-01-01