我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

Effects of close-to-nature transformation on structure characteristics of Pinus massoniana and Cunninghamia lanceolata plantations(PDF)

Journal of Nanjing Forestry University(Natural Science Edition)[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017 04
Page:
101-107
Column:
lw
publishdate:
2017-07-31

Article Info:/Info

Title:
Effects of close-to-nature transformation on structure characteristics of Pinus massoniana and Cunninghamia lanceolata plantations
Article ID:
1000-2006(2017)04-0101-07
Author(s):
LIU Zhilong12 MING Angang1 JIA Hongyan1* CAI Daoxiong1 MA Yue1 WANG Yanan1 SUN Dongjing1
1. Experimental Center of Tropical Forestry, CAF, Pingxiang 532600,China;
2. Guangxi Youyiguan Forest Ecosystem Research Station, Pingxiang 532600,China
Keywords:
plantation close-to-nature transformation stand structure uniform angel index mingling neighborhood comparison
Classification number :
S725
DOI:
10.3969/j.issn.1000-2006.201606040
Document Code:
A
Abstract:
【Objective】The close-to-nature transformation changes the forest composition and stand structure and thus, affects the tree growth and stand stability. Therefore, a study on the effects of close-to-nature transformation on stand structure has important significance in improving the quality of degrading plantations and producing large-diameter timber. 【Method】This study focused on Pinus massoniana and Cunninghamia lanceolata plantations, afforested in 1993 and close-to-nature transformated in 2008. Three parameters(mingling, uniform angle index, and neighborhood comparison)were considered to compare the changes in stand spatial structure before and after close-to-nature transformation. 【Results】① The diameter of control stands followed normal distribution, while the close-to-nature transformation stands showed the reversal “J” type. The tree height of control stands was a single peak type, whereas that of close-to-nature transformation plantations showed a double peak. ② The close-to-nature transformation improved stand mingling significantly, the average mingling increased from 0.00 and 0.16 to 0.82 and 0.89 in the P. massoniana and C. lanceolata control stands and their close-to-nature stands respectively. ③ Close-to-nature transformation has little effect on the uniform angle index, it changed from uniform distribution to reunion distribution in C. lanceolata stands; however, it has been in a random distribution state in P. massoniana stands. ④ The number of dominant and sub-dominant individuals were increased after close-to-nature transformation. The average neighborhood comparison of P. massoniana and C. lanceolata close-to-nature stands was 0.40 and 0.46 respectively, whereas there were generally medium individuals in the control stands. 【Conclusion】 In the perspective of non-spatial structure, close-to-nature transformation improves the composition of forest species, and the diameter of trees is transferred to an inverted “J” type as uneven aged forest. In terms of the stand spatial structure, the characteristic of artificial pure forests which were zero or less mixed with uniformly and evenly distributed tree species has been weakened by the transformation. In the close-to-nature forests, interplanted and natural regenerated species are growing well to increase the stand mingling, biodiversity, and optimize the forest spatial structure, where could become different-aged multilayer compound forests.

References

[1] 陈幸良, 巨茜, 林昆仑. 中国人工林发展现状、问题与对策[J]. 世界林业研究, 2014, 27(6): 54-59. DOI:10.13348/j.cnki.sjlyyj.2014.06.008. CHEN X L, JU Q, LIN K L. Development status, issues and countermeasures of China's plantation[J]. World Forestry Research, 2014, 27(6): 54-59.
[2] 杨承栋, 孙启武, 焦如珍, 等. 大青山一二代马尾松土壤性质变化与地力衰退关系的研究[J]. 土壤学报, 2003, 40(2): 267-273. YANG C D, SUN Q W, JIAO R Z, et al. Studies on the relationship between soil property changes and soil degradation under 1st and 2nd rotaion masson pine plantaion at Daqingshan[J]. Acta Pedologica Sinica, 2003, 40(2): 267-273.
[3] 田大伦, 沈燕, 康文星, 等.连栽第1和第2 代杉木人工林养分循环的比较[J]. 生态学报, 2011, 31(17): 5025-5032. TIAN D L, SHEN Y, KANG W X, et al. Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations[J]. Acta Ecologica Sinica, 2011, 31(17): 5025-5032.
[4] 丁应祥, 田野, 戚玲. 连栽杉木人工林生产力的模拟与预测[J]. 南京林业大学学报, 2000, 24(3): 21-25. DOI:10.3969/j.jssn.1000-2006.2000.03.006. DING Y X, TIAN Y, QI L. Modeling of Chinese fir plantation productivities in different rotations[J]. Journal of Nanjing Forestry University, 2000, 24(3): 21-25.
[5] 罗云建, 张小全. 杉木(Cunninghamia lanceolata)连栽地力退化和杉阔混交林的土壤改良作用[J]. 生态学报, 2007, 27(2): 715-724. LUO Y J, ZHANG X Q. The assessment of soil degradation in successive rotations of Chinese fir plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved[J]. Acta Ecologica Sinica, 2007, 27(2): 715-724.
[6] 杨玉盛, 陈光水, 黄宝龙. 杉木多世代连栽的土壤水分和养分变化[J]. 南京林业大学学报, 2000, 24(2): 25-28. DOI:10.3969/j.jssn.1000-2006.2000.02.008. YANG Y S, CHENG G S, HUANG B L. Variation in soil water and nutrients between different rotation stands of Chinese fir[J]. Journal of Nanjing Forestry University, 2000, 24(3)24(2): 25-28.
[7] 侯元兆, 陈统爱. 我国结合次生林经营发展珍贵用材树种的战略利益[J]. 世界林业研究, 2008, 21(2): 49-52. DOI:10.13348/j.cnki.sjlyyj.2008.02.014. HOU Y Z, CHEN T A. The strategic benefits of developing precious commercial tree species integrated with secondary forest management in China[J]. World Forestry Research, 2008, 21(2): 49-52.
[8] 曾祥谓, 樊宝敏, 张怀清, 等. 我国多功能森林经营的理论探索与对策研究[J]. 林业资源管理, 2013(2): 10-16. ZENG X W, FAN B M, ZHANG H Q, et al. Study on the theory and strategy of multifunctional forest management in China[J]. Forest Resources Management, 2013(2): 10-16.
[9] MOSTAFA M, MOHAMMAD R. MARVIE M, et al. Over-mature beech trees(Fagus orientalis Lipsky)and close-to-nature forestry in northern Iran[J]. Journal of Forestry Research, 2012, 23(2): 289-294.
[10] LARSEN J B, NIELSEN A B. Nature-based forest management: where are we going? elaborating forest development types in and with practice[J]. Forest Ecology and Management, 2007, 238: 107-117.
[11] KEVIN L O. What is close-to-nature silviculture in a changing world[J]. Forestry, 2016, 89(1): 1-6.
[12] 陆元昌. 近自然森林经营的理论与实践[M]. 北京: 科学出版社, 2006.
[13] 林思祖, 黄世国. 论中国南方近自然混交林营造[J]. 世界林业研究, 2001, 14(2): 73-78. DOI:10.13348/j.cnki.sjlyyj.2001.02.013. LIN S Z, HUANG S G. A establishment and management of nature-approximating mixed forests in south China[J]. World Forestry Research, 2001, 14(2): 73-78.
[14] 何友均, 梁星云, 覃林, 等. 南亚热带人工针叶纯林近自然改造早期对群落特征和土壤性质的影响[J]. 生态学报, 2013, 33(8): 2484-2495. HE Y J, LIANG X Y, QIN L, et al. Community characteristics and soil properties of coniferous plantation forest monocultures in the early stages after close-to-nature transformation management in southern subtropical China[J]. Acta Ecologica Sinica, 2013, 33(8): 2484-2495.
[15] 罗应华, 孙冬婧, 林建勇, 等. 马尾松人工林近自然化改造对植物自然更新及物种多样性的影响[J]. 生态学报,2013, 33(19): 6154-6162. LUO Y H,SUN D J,LIN J Y,et al. Effect of close-to-nature management on the natural regeneration and species diversity in a masson pine plantation[J]. Acta Ecologica Sinica, 2013, 33(19): 6154-6162.
[16] 赵中华. 基于林分状态特征的森林自然度评价研究[D]. 北京:中国林业科学研究院, 2009. ZHAO Z H. Evaluation forest natrualness based on stand state characteristics[D]. Beijing:Chinese Academy of Forestry, 2009.
[17] 刘于鹤, 林进. 新形势下森林经营工作的思考[J]. 林业经济, 2013(1): 3-9. DOI:10.13843/j.cnki.lyjj.2013.11.009. LIU Y H, LIN J. Thinking of forest management in the new situation[J]. Forestry Economics, 2013(1): 3-9.
[18] 王宏, 陆元昌. 木材储备基地及其多功能森林经营建设对策[J]. 世界林业研究, 2013, 26(1): 12-17. DOI:10.13348/j.cnki.sjlyyj.2003.01.003. WANG H, LU Y C. Timber reserve production base and its role in multi-functional forest management[J]. World Forestry Research, 2013, 26(1): 12-17.
[19] 赵良平. 森林生态系统健康理论的形成与实践[J]. 南京林业大学学报(自然科学版), 2007, 31(3): 1-7. DOI:10.3969/j.jssn.1000-2006.2007.03.001. ZHAO L P.Development and application of forest ecosystem health theory in forest ecological construction of China[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(3): 1-7.
[20] 惠刚盈, 胡艳波, 赵中华. 再论“结构化森林经营”[J]. 世界林业研究, 2009, 22(1): 14-19. DOI:10.13348/j.cnki.sjlyyj.2009.01.003. HUI G Y, HU Y B, ZHAO Z H.Further discussionon “structure-based forest management”[J]. World Forestry Research, 2009, 22(1): 14-19.
[21] 惠刚盈, 赵中华, 胡艳波. 结构化森林经营技术指南[M]. 北京:中国林业出版社, 2010.
[22] 惠刚盈, KLAUSVON G, 胡艳波, 等. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.
[23] 赵中华, 惠刚盈, 胡艳波, 等. 结构化森林经营方法在阔叶红松林中的应用[J]. 林业科学研究, 2013, 26(4): 467-472. DOI:10.13275/j.cnki.lykxyj.2013.04.018. ZHAO Z H, HUI G Y, HU Y B, et al. Application of structure-based forest management in broadleaved Korean pine mixed forest[J]. Forest Research, 2013, 26(4): 467-472.
[24] 赵中华, 袁士云, 惠刚盈, 等. 经营措施对林分空间结构特征的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(7): 135-142. ZHAO Z H, YUAN SY, HUI G Y, et al. Impacts of different management measures on spatial structure characteristics[J]. Journal of Northwest A &F University(Nat Sci Ed), 2008, 36(7): 135-142.
[25] 巫志龙, 周成军, 周新年, 等. 杉阔混交人工林林分空间结构分析[J]. 林业科学研究, 2013, 26(5): 609-615. DOI:10.13275/j.cnki.lykxyj.2013.05.013. WU Z L, ZHOU C J, ZHOU X N, et al. Analysis of stand spatial structure of Cunninghamia lanceolata broad-leaved mixed plantation[J]. Forest Research, 2013, 26(5): 609-615.
[26] 万丽, 刘昀东, 丁国栋, 等. 密度调控对油松人工林空间结构的影响[J]. 四川农业大学学报, 2013, 31(1): 27-31. WAN L, LIU J L, DING G D, et al. Effects of density control on the spatial structure of Pinus tabulaeformis plantation[J]. Journal of Sichuan Agricultural University, 2013, 31(1): 27-31.
[27] 张连金, 胡艳波, 赵中华, 等. 北京九龙山侧柏人工林空间结构多样性[J]. 生态学杂志, 2015, 34(1): 60-69. ZHANG L J, HU Y B, ZHAO Z H, et al. Spatial structure diversity of Platycladus orientalis plantation in Beijing Jiulong Mountain[J]. Chinese Journal of Ecology, 2015, 34(1): 60-69.
[28] 胡艳波. 基于结构优化森林经营的天然异龄林空间结构优化模型研究[D]. 北京:中国林业科学研究院, 2010. HU Y B. Structure-based spatial optimization management model for natural uneven-aged forest[D]. Beijing:Chinese Academy of Forestry, 2010.
[29] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23-27. DOI:10.13275/j.cnki.lykxyj.2001.01.005. HUI G Y, HU Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23-27.
[30] 惠刚盈, 胡艳波. 角尺度在林分空间结构调整中的应用[J]. 林业资源管理, 2006, 4(2):31-35. HUI G Y, HU Y B. Application of neighborhood pattern in forest spatial structure regulation[J]. Forest Resources Management, 2006, 4(2):31-35.
[31] 惠刚盈, KLAUSVON G, MATTHIAS A. 一个新的林分空间结构参数—大小比数[J]. 林业科学研究, 1999, 12(1): 1-6. DOI:10.13275/j.cnki.lykxyj.1999.01.001. HUI G Y, KLAUSVON G, MATTHIAS A. A new parameter for stand spatial structure neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1-6.
[32] 于洪光, 高海涛, 张义涛. 结构化森林经营技术要点与应用[J]. 吉林林业科技, 2014, 43(6): 16-19. YU H G, GAO H T, ZHANG Y T. The essential and application of structuring forest management technology[J]. Journal of Jilin Forestry Science and Technology, 2014, 43(6): 16-19.
[33] 姜鹏, 孟京辉, 陆元昌, 等. 马尾松近自然改造初期的混交度与分布格局[J]. 西北林学院学报, 2014, 30(5): 147-150. JIANG P, MENG J H, LU Y C, et al. Minglings and sptial distribution of Pinus massoniana plantation in the initial stage of near-to mature transformation[J]. Journal of Northwest Forestry University, 2014, 30(5):147-150.
[34] 郝云庆, 王金锡, 王启和, 等. 柳杉人工林近自然改造过程中林分空间的结构变化[J]. 四川农业大学学报, 2008, 26(1): 48-52. HAO Y Q, WANG J X, WANG Q H, et al. Spatial structure dynamic of the close-to-nature forestry management of Cryptomeria fortunei plantation[J]. Journal of Sichuan Agricultural University, 2008, 26(1): 48-52.

Last Update: 1900-01-01