我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

土地覆盖变化检测中不同相对辐射归一化方法的评价(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
108-114
Column:
研究论文
column:
2017-07-31

Article Info:/Info

Title:
Performance assessment of different relative radiometric normalization approaches applied to land cover change detection
Article ID:
1000-2006(2017)04-0108-07
Author:
李明诗梅昭容
南京林业大学林学院,南方现代林业协同创新中心, 江苏 南京 210037
Author(s):
LI Mingshi MEI Zhaorong
College of Forestry, Nanjing Forestry University, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing 210037, China
Keywords:
土地覆盖变化 多时相遥感数据 伪不变特征 加权不变点 归一化
Keywords:
land cover change multi-temporal remotely sensed data pseudo-invariant features weighted invariant pixels normalization
Classification number :
S757
DOI:
10.3969/j.issn.1000-2006.2017.04.017
Document Code:
A
Abstract:
【目的】从土地覆盖变化检测性能的角度寻求一种精度较高且归一化过程相对简单、客观和自动化的辐射归一化方法。【方法】借助2013年7月和2015年9月的南京地区Landsat 8 OLI图像并以2013年影像为基准,执行基于伪不变特征(pseudo-invariant features, PIF)、时不变点群(temporally invariant cluster, TIC)、全景影像回归(wall-to-wall regression, WWR)和加权不变点(weighted invariant pixels, WIP)4种方法,分波段对2015年的多光谱图像进行辐射归一化处理。在此基础上利用变化向量分析技术(change vector analysis, CVA)进行土地覆盖变化信息提取,并借助高空间分辨率Google Maps对提取到的变化信息进行空间一致性验证。【结果】使用PIF、TIC、WWR和WIP方法对图像归一化后,利用变化向量分析提取的土地覆盖变化信息与目视解译得出的土地覆盖变化信息的空间一致性分别为79.63%、81.75%、72.72%和82.59%; 依不同变化地类给出变化检测阈值,算法的空间一致性会进一步提高。【结论】考虑到算法的客观性、自动化程度和变化检测精度,在4种方法中,TIC法和 WIP法更适合工程化的图像辐射归一化操作。
Abstract:
【Objective】Seek a relatively simple, automated and objective normalization method with a high accuracy in land cover change detection. 【Method】Considering the Landsat OLI 2013(July)images as the reference, four relative radiometric normalization approaches including the pseudo-invariant features(PIF), the temporally invariant cluster(TIC), the wall-to-wall regression(WWR), and the weighted invariant pixels(WIP)were used to normalize the Landsat OLI 2015(September)image. Based on normalization, the change vector analysis(CVA)method was used to detect land cover change information, and these detected land cover changes were validated by visually interpreting high-resolution Google images covering the study area to calculate a spatial agreement index. 【Result】Results indicated that the spatial agreement measures for PIF, TIC, WWR and WIP methods were 79.63%,81.75%,72.72% and 82.59%, respectively, and the agreement measure would further escalate if the change type dependent thresholds were properly specified.【Conclusion】 With respect to objectivity, automation degree and change detection accuracy of the normalization methods, the TIC and WIP approaches are considered to be suitable for engineering oriented image normalization operations.

References

[1] PAOLINI L, GRINGS F, SOBRINOO JA, et al. Radiometric correction effects in landsat multi-date /multi-sensor change detection studies[J]. International Journal of Remote Sensing, 2006, 22(3-4): 685 -704. DOI: 10.1080/01431160500183057.
[2] 陈崇成, 黄方红, 黄绚. 自动散点控制回归技术在遥感数据辐射归一化中的应用[J]. 地球信息科学, 2000(2):52 -55. CHEN C C, HUANG F H, HUANG X. An automatic scattergram-controlled regression: a new relative radiometric normalization technique and its application to landsat TM datasets[J]. Geo-information Science, 2000(2): 52 -55.
[3] CHEN X X, VIERLING L, DEERING D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time[J]. Remote Sensing of Environment, 2005, 98:63-79. DOI: 10.1016/j.rse.2005.05.021.
[4] 余晓敏, 邹勤. 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012, 35(6): 8-13. DOI:10.3969/j.issn.1672-5867.2012.06.003 YU X M, ZOU Q. Methods of radiometric normalization for multi-temporal remote sensing images: a review[J]. Geomatics & Spatial Information Technique, 2012, 35(6): 8-13.
[5] 张鹏强, 余旭初, 刘智, 等. 多时相遥感图像相对辐射校正[J]. 遥感学报, 2006, 10(3): 339-344.DOI:10.3321/j.issn.1007-4619.2006.03.009. ZHANG P Q, YU X C, LIU Z, et al. A study on relative radiometric correction of multi-temporal remote sensing images[J]. Journal of Remote Sensing, 2006, 10(3): 339-344.
[6] SCHOTT J R, SALVAGGIO C, VOLCHOK W J. Radiometric scene normalization using pseudo invariant features[J]. Remote Sensing of Environment, 1988, 26: 1-16. DOI: 10.1016/0034-4257(88)90116-2.
[7] JENSEN J R. Introductory digital image processing:a remote sensing perspective[M]. third edition. New Jersey: Prentice Hall, 2007.
[8] ELVIDGE C, YUAN D, WEERACKOON R D, et al. Relative radiometric normalization of landsat multispectral scanner(MSS)data using an automatic scattergram-controlled regression[J]. Photogrammetric Engineering & Remote Sensing, 1995, 61: 1255-1260.
[9] DU Y, TEILLET P M, CIHLAR J. Radiometric normalization of multi-temporal high-resolution satellite images with quality control for land cover change detection[J]. Remote Sensing of Environment, 2002, 82: 123-134. DOI: 10.1016/S0034-4257(02)00029-9.
[10] LIN C H, LIN B Y, LI K Y, et al. Radiometric normalization and cloud detection of optical satellite images using invriant pixels[J]. Remote Sensing of Envrionment, 2015, 106: 107-117.DOI: 10.1016/j.isprsjprs.2015.05.003.
[11] NIELSEN A A, CONRADSEN K, SIMPSON J J. Multivariate alternation detection(MAD)and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64(1): 1-19.DOI: 10.1016/S0034-4257(97)00162-4.
[12] CHEN C, CHEN Z J, LI M C, et al. Parallel relative radiometric normalization for remote sensing image mosaics[J]. Computers & Geosciences, 2014, 73: 28-36.DOI: 10.1016/j.cageo.2014.08.007.
[13] 孙艳丽, 张霞, 帅通, 等. 光谱角—欧氏距离的高光谱图像辐射归一化[J]. 遥感学报, 2015, 19(4): 618-626.DOI:10.11834/jrs.20154176 SUN Y L, ZHANG X, SHUAI T, et al. Radiometric normalization of hyperspectral satellite images with spectral angle distance and Euclidean distance[J]. Journal of Remote Sensing,2015, 19(4): 618-626.
[14] XU Q, HOU Z Y, TOKOLA T. Relative radiometric correction of multi-temporal ALOS AVNIR-2 data for the estimation of forest attributes[J]. Journal of Photogrammetry and Remote Sensing, 2012, 68: 69-78.DOI: 10.1016/j.isprsjprs.2011.12.008.
[15] XIAN G, HOMERC, FRY J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using landsat imagery change detection methods[J]. Remote Sensing of Environment, 2009, 113: 1133-1147. DOI: 10.1016/j.rse.2009.02.004.
[16] 张有水, 林广发, 刘玉峰, 等.基于TIC的多时相遥感影像相对辐射归化处理[J]. 地理科学, 2009, 29(3): 427-432. DOI:10.3969/j.issn.1000-0690.2009.03.020. ZHANG Y S, LIN G F, LIU Y F, et al. TIC-based radiometric normalization of multi-tempora satellite imagery[J]. Scientia Geographica Sinica, 2009, 29(3): 427-432.
[17] 郭丽峰, 高小红, 亢健, 等. 伪不变特征法在遥感影像归一化处理中的应用[J]. 遥感技术与应用, 2009, 24(5): 588-595. DOI:10.11873/j.issn.1004-0323.2009.5.588. GUO L F, GAO X H, KANG J, et al. Application of the pseudo-invariant feature in normalization process of the remote sensing images[J]. Remote Sensing Technology and Application, 2009, 24(5): 588-595.
[18] 余晓敏, 陈云浩. 基于改进的自然散点控制回归算法的遥感影像相对辐射归一化[J]. 光学技术, 2007, 33(2): 185-188. YU X M, CHEN Y H. Relative radiometric normalization of remotely sensed images based on improved automatic scattergram-controlled regression[J]. Optical Technique, 2007, 33(2): 185-188.
[19] OLTHOF I, POULIOT D, FERNANDES R, et al. Landsat 7 ETM+ radiometric normalization comparison for northern mapping applications[J]. Remote Sensing of Environment, 2005, 95(3): 388-398.DOI: 10.1016/j.rse.2004.06.02.

Memo

Memo:
收稿日期:2016-05-28 修回日期:2017-02-27
基金项目:国家林业局“948”项目(2014-4-25); 国家自然科学基金项目(31670552); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:李明诗(nfulms@njfu.edu.cn),教授。
引文格式:李明诗,梅昭容. 土地覆盖变化检测中不同相对辐射归一化方法的评价[J]. 南京林业大学学报(自然科学版),2017,41(4):108-114.
Last Update: 1900-01-01