我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

站点密度对复杂地形PRISM月降雨空间插值精度的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
115-120
Column:
研究论文
column:
2017-07-31

Article Info:/Info

Title:
Effects of spatial station density on accuracy of spatial interpolation of monthly rainfall over complex terrain base on PRISM
Article ID:
1000-2006(2017)04-0115-06
Author:
蒋育昊1刘鹏举1*夏智武1许等平2张英凯1
1.中国林业科学研究院资源信息研究所, 北京 100091;
2.国家林业局调查规划设计院,北京 100714
Author(s):
JIANG Yuhao1 LIU Pengju1* XIA Zhiwu1 XU Dengping2 ZHANG Yingkai1
1.Research Institute of Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China;
2.Academy of Forestry Inventory and Planning, SFA, Beijing 100714, China
Keywords:
站点密度 坡面回归方程模型 降雨 空间插值 精度
Keywords:
spatial stations density PRISM rainfall spatial interpolation precision
Classification number :
S161.4
DOI:
10.3969/j.issn.1000-2006.2017.04.018
Document Code:
A
Abstract:
【目的】利用降雨和高程与坡向等地形因子之间关系,分析站点密度对于坡面回归方程模型(PRISM)插值精度的影响,探究该模型的适用范围。【方法】以北京西北山区为例,基于研究区数字高程模型(DEM)、山地自动气象站点数据和降雨数据计算插值结果,采用反距离加权法(IDW)、克里金法(Kriging)和样条函数法(Spline)等插值方法,以及交叉验证和实测数据验证等方法进行数据对比,分析站点密度对插值结果的影响。【结果】当站点密度从0.55×10-2个/km2降低到0.18×10-2个/km2时,各种插值方法的插值精度均随站点密度的减少而降低,PRISM模型的变化程度最大,Spline的变化程度最小; 同时当站点密度逐渐降低至0.18×10-2个/km2时,PRISM模型的插值误差超越Kriging和IDW,但仍在Spline之上。【结论】当站点密度较低时,PRISM模型优势不明显,建议使用IDW和Kriging。
Abstract:
【Objective】Investigate the influence of station density on the accuracy of PRISM interpolation, in order to elucidatethe model's scope of application.【Method】Based on the DEM of the northwest mountains of Beijing and rainfall data from the mountain automatic weather stations to calculate the result of interpolation. These results were then compared with the IDW, Kriging and Spline interpolation models using cross validation and test data validation.【Result】The precision of interpolation was reduced when site density was reduced from 0.55×10-2 to 0.18×10-2 sites/km2 but was reduced most when using the PRISM model and least when using the Spline model. Furthermore, when the site density was reduced to 0.18×10-2 sites/km2, the error of the PRISM model was less than that of the Spline model, but still greater than the Kriging and IDW models. 【Conclusion】The present study suggests that the IDW and Kriging models should be used when stations are sparse.

References

[1] 储少林,周兆叶,袁雷,等.降水空间插值方法应用研究——以甘肃省为例[J].草业科学,2008(6):19-23. DOI:10.3321/j.issn:1001-8166.2000.03.004. CHU S L, ZHOU Z Y, YUAN L, et al.Study on precipitation interpolation methods: a case of Gansu Province[J]. Pratacultural Science, 2008(6):19-23.
[2] 李新,程国栋,卢玲.空间内插方法比较[J]. 地球科学进展, 2000, 15(3):260-265. LI X, CHENG G D, LU L.Comparison of spatial interpolation methods[J].Advance in Earth Sciences,2000, 15(3):260-265.
[3] 郝成元,赵同谦.中国气候变化敏感区降水量区域对比:以黑龙江、新疆和西藏三省为例[J].地理科学进展,2011,30(1):73-79. HAO C Y, ZHAO T Q.Comparative research on the precipitation variation in the regions susceptible to global climate change in china: a case study in Heilongjiang, Xinjiang and Tibet[J]. Process in Geography, 2011,30(1):73-79.
[4] 赵娜,岳天祥,王晨亮.1951-2010年中国季平均降水高精度曲面建模分析[J].地理科学进展,2013,32(1):49-58. DOI:10.3724/SP.J.1033.2013.00049. ZHAO N,YUE T X,WANG C L.Surface modeling of seasonal mean precipitation in China during 1951-2010[J].Progress in Geography, 2013,32(1):49-58.
[5] 宋丽琼,田原,邬伦,等.日降水量的空间插值方法与应用对比分析——以深圳市为例[J].地球信息科学,2008,10(5):566-572. DOI:10.3969/j.issn.1560-8999.2008.05.003. SONG L Q,TIAN Y,WU L,et al.On comparison of spatial interpolation methods of daily rainfall data:a case study of shenzhen[J].Geo-Information Science, 2008, 10(5):566-572.
[6] 杨强,何立恒,鲍其胜.延安市1980-2010年气温和降水的年际变化特征[J].南京林业大学学报学报(自然科学版), 2014,38(6):179-183. DOI:10.3969/j.issn.1000-2006.2014.06.034. YANG Q, HE L H,BAO Q S. Characteristics of annual change in temperature and precipitation in Yan'an region during 1980-2010 [J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2014,38(6):179-183.
[7] 封志明,杨艳昭,丁晓强,等.气象要素空间插值方法优化[J].地理研究,2004(3):357-364. DOI:10.3321/j.issn:1000-0585.2004.03.009. FENG Z M,YANG Y Z,DING X Q, et al.Optimization of the spatial interpolation methods for climate resources[J]. Geographical Research, 2004(3):357-364.
[8] CHRISTOPHER D, WAYNE P G, GEORGE H T, et al. A knowledge-based approach to the statistical mapping of climate[J].Climate Research, 2002,22(1):99-113.
[9] GEORGE H T, CHRISTOPHER D. Using PRISM climate grids and GIS for extreme precipitation mapping[C]//The 14th Conference on Applied Climatology, 2004.
[10] 朱求安,张万昌,赵登忠.基于PRISM和泰森多边形的地形要素日降水量空间插值研究[J].地理科学, 2005,25(2):233-238. DOI:10.3969/j.issn.1000-0690.2005.02.017. ZHU Q A,ZHANG W C,ZHAO D Z. Topography-based spatial daily precipitation interpolation by means of PRISM and Thiessen polygon analysis[J].Scientla Geographica Sinica,2005,25(2):233-238.
[11] 赵登忠,张万昌,刘三超.基于DEM的地理要素PRISM空间内插研究[J].地理科学,2004, 24(2):205-211. DOI:10.3969/j.issn.1000-0690.2004.02.013. ZHAO D Z,ZHANG W C,LIU S C. Interpolation of meteorological data based on DEM using PRISM model[J]. Scientla Geographica Sinica,2004,24(2):205-211.
[12] 韩庆红,陈渭民,王普才,等. PRISM在松花江流域降水分布中的应用研究[J].南京气象学院学报,2006,29(1):56-61. DOI:10.3969/j.issn.1674-7097.2006.01.008. HAN Q H,CHEN W M,WANG P C,et al. Application of PRISM spatial interpolation to the precipitation distribution in the Songhuajiang River Basin[J].Journal of Nanjing Institute of Meteorology, 2006,29(1):56-61.
[13] 朱华忠,罗天祥, Christopher Daly.中国高分辨率温度和降水模拟数据的验证[J]. 地理研究, 2003, 22(3):349-359. DOI:10.3321/j.issn:1000-0585.2003.03.011. ZHU H Z,LUO T X,Christopher Daly.Validation of simulated grid data sets of China's temperature and precipitation with high spatial resolution[J].Geographical Research, 2003, 22(3):349-359.
[14] 夏智武,刘鹏举,陈增威,等.山地环境日气温PRISM空间插值研究[J]. 北京林业大学学报, 2016,38(1):83-90. DOI:10.13332/j.1000-1522.20150147. XIA Z W,LIU P J,CHEN Z W, et al.Spatial interpolation of daily air temperature in mountain area based on PRISM[J].Journal of Beijing Forestry University, 2016,38(1):83-90.
[15] 北京市水务局.北京市水资源公报[R].北京:北京市水务局,2012. Beijing Municipal Water Affairs Bureau.Beijing water resources bulletin[R].Beijing: Beijing Municipal Water Affairs Bureau, 2012.
[16] 伍光和,王乃昂,胡双熙,等.自然地理学[M].4版.北京:高等教育出版社,2007.
[17] 傅抱璞.山地气候[M].北京:科学出版社,1983.
[18] 傅抱璞.地形和海拔高度对降水的影响[J].地理科学,1992,47(4):302-314. FU B P. The effects of topography and elevation on precipitation[J]. Scientia Geographica Sinica, 1992,47(4):302-314.
[19] 徐成东.基于线性加权回归模型的降水量空间插值方法研究[D].开封:河南大学,2008. XU C D.Research on the spatial interpolation for precipitation data using weighted linear regression model[D].Kaifeng:University of Henan,2008.

Memo

Memo:
收稿日期:2016-03-23 修回日期:2016-09-14
基金项目:国家高技术研究发展计划(2012AA102001-2)
第一作者:蒋育昊(jiang_yuhao163@163.com)。*通信作者:刘鹏举(liupeng@caf.ac.cn),副研究员。
引文格式:蒋育昊,刘鹏举,夏智武,等. 站点密度对复杂地形PRISM月降雨空间插值精度的影响[J]. 南京林业大学学报(自然科学版),2017,41(4):115-120.
Last Update: 1900-01-01