我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

竹笋壳/脲醛树脂改性淀粉胶黏剂复合材料的降解特性(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
160-166
Column:
研究论文
column:
2017-07-31

Article Info:/Info

Title:
Degradability of bamboo shoot shell /UF modified starch adhesive composites
Article ID:
1000-2006(2017)04-0160-07
Author:
张志威关明杰*刘源松
南京林业大学材料科学与工程学院,国家林业局竹材工程技术研究中心,江苏 南京 210037
Author(s):
ZHANG Zhiwei GUAN Mingjie* LIU Yuansong
College of Materials Science and Engineering, Nanjing Forestry University, Bamboo Engineering and Technology Research Center, State Forestry Administration, Nanjing 210037, China
Keywords:
竹笋壳 改性淀粉胶黏剂 降解特性 自然暴露法 土壤掩埋法 水性培养液法 纤维素酶法
Keywords:
bamboo shoot shell modified starch adhesive degradability outdoor exposure test soil burying test aqueous medium test cellulase test
Classification number :
TS653
DOI:
10.3969/j.issn.1000-2006.2017.04.025
Document Code:
A
Abstract:
【目的】研究不同环境中竹笋壳/脲醛树脂(UF)改性淀粉胶黏剂复合材料的质量损失率、结构及微观形态变化等降解特性。【方法】采用自然暴露法、土壤掩埋法、水性培养液法和纤维素酶法对复合材料进行了降解处理,测定了复合材料在降解过程中的质量损失率,并通过X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和扫描电子显微镜(SEM)分析了复合材料降解后的相对结晶度、化学结构和微观形貌。【结果】复合材料经过自然暴露、土壤掩埋、水性培养、纤维素酶缓冲溶液浸泡等4种环境降解后,其终质量损失率依次为2.1%、21.7%、25.7%和29.9%,相对结晶度由空白对照组的43.9%依次增大到46.4%、49.7%、53.2%和55.4%,并且特征吸收峰发生了不同程度的降低; SEM分析显示,经过4种环境降解后,复合材料表面变得粗糙,竹笋壳出现了不同程度的破坏,其中以纤维素酶缓冲溶液降解后的变化最为显著。【结论】竹笋壳/脲醛树脂(UF)改性淀粉胶黏剂复合材料在土壤、水性培养液和纤维素酶环境中具有良好的生物降解特性。
Abstract:
【Objective】Evaluate the degradability of bamboo shoot shell/urea formaldehyde(UF)-modified starch adhesive composites under different conditions.【Method】The composites were degraded by outdoor exposure, soil burying, aqueous medium, and cellulose tests.The mass loss rate was determined during the degradation process.There lative crystallinity, chemical structure and microstructure of the composites after degradation were analyzed by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscope(SEM)respectively. 【Result】The final mass loss rates of the composites after the 4 degradation conditions were 2.1%, 21.7%, 25.7% and 29.9%. XRD analysis showed that the relative crystallinities of the composites after degradation under the 4 conditions increased to 46.4%, 49.7%, 53.2% and 55.4%, respectively, as compared with that(43.9%)of the control group. FTIR analysis indicated that the characteristic absorption peak values of the composites decreased on different degree after degradation under the 4 conditions. SEM analysis showed that the composite surface became rough and that bamboo shoot shell surface under went degrees of damage; in particular,the bamboo shoot shell showed the most obvious change after degradation under the cellulose condition.【Conclusion】Bamboo shoot shell/UF-modified starch adhesive composites showed good biodegradability under the soil, aqueous medium and cellulose conditions.

References

[1] YE L Y, ZHANG J M, ZHAO J, et al. Liquefaction of bamboo shoot shell for the production of polyols[J]. Bioresource Technology, 2014, 153(2): 147-53. DOI: 10.1016/j.biortech.2013.11.070.
[2] FRIAS M, SAVASTANO H, VILLAR E, et al. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes [J]. Cement & Concrete Composites, 2012, 34(9): 1019-1023. DOI:10.1016/j.cemconcomp.2012.05.005.
[3] ROSELLO J, SORIANO L, PILAR S M, et al. Microscopy characterization of silica-rich agrowastes to be uses in cement binders: bamboo and sugarcane leaves[J]. Microscopy and Microanalysis, 2015, 5(21): 1314-1326. DOI: 10.1017/S1431927615015019.
[4] 武静文,袁艺,王文文,等. 不同种竹笋及笋壳提取物抗氧化活性的研究[J]. 激光生物学报, 2011, 20(2): 245-249, 260. DOI:10.3969/j.issn.1007-7146.2011.02.01 9. WU J W, YUAN Y, WANG W W, et al. Antioxdant activity of crude extracts from shoots and shells of different bamboos[J]. Acta Laser Biology Sinica, 2011, 20(2): 245-249, 260.
[5] JIN Y C, YUAN K. Studies on the functional components and bioactivity and the relativity of bamboo shoot and shells[J]. Mechnical Engineering and Materials Science, 2012, 108: 314-319. DOI:10.4028/www.scientific.net/A MM.108.314.
[6] JING X L, JING Y H.Evaluation of the adsorption of Cr(VI)by modified bamboo shells[J]. Applied Mechanics and Materials, 2013(361-363): 709-715. DOI:10.4028/w ww.scientific.net/AMM.361-363.709.
[7] ZHANG J M, ZHONG Z W, ZHU Z W,et al. Application of bamboo shoot shell in color removal from methylene blue solution[J]. Applied Mechanics and Materials, 2014(675-677): 489-492. DOI:10.4028/www.scientific.n et/AMM.675-677.489.
[8] 倪海燕,陈东生,付世伟.竹笋壳纤维的吸湿性能[J]. 纺织学报, 2014, 35(6): 20-24. DOI:10.13475/j.fzxb.20 1406002005. NI H Y, CHEN D S, FU S W. Moisture adsorption property of bamboo shell fiber[J]. Journal of Textile Research, 2014, 35(6): 20-24.
[9] 倪海燕,付世伟,甘应进,等.竹笋壳纤维的微观结构与热性能测定[J]. 南方农业学报, 2014(5): 829-832. DOI:10.3969/j:issn.2095-1191.2014.5.829. NI H Y, FU S W, GAN Y J, et al. Microstructure and thermal properties of bamboo shoots shell fiber[J]. Journal of Southern Agriculture, 2014(5): 829-832.
[10] 陈延兴,李建强,严娜娜,等. 竹笋壳纤维的提取与其基本结构特性[J]. 天津工业大学学报, 2009, 28(6): 32-34. DOI: 10.3969/j.issn.1671-024X.2009.06.008. CHEN Y X, LI J Q, YAN N N, et al. Extraction of bamboo shell fiber and its basic structural characteristics[J]. Journal of Tianjing Polytechnic University, 2009, 28(6): 32-34.
[11] 张有珍,马嘉伟,姚芳,等. 笋壳微生物腐熟肥料利用的研究[J]. 世界竹藤通讯, 2012, 10(1): 16-19. DOI: 10.3969/j.issn.1672-0431.2012.01.009. ZHANG Y Z, MA J W,YAO F, et al. Study on utilization of microbial manure from bamboo shoot shell[J]. World Bamboo and Rattan, 2012, 10(1): 16-19.
[12] 赵丽萍,周振明,任丽萍,等. 笋壳作为动物饲料利用研究进展[J]. 中国畜牧杂志, 2013, 49(13): 77-80. DOI: 10.3969/j.issn.0258-7033.2013.13.020. ZHAO L P, ZHOU Z M, REN L P, et al. Research progress on bamboo shoot shell as animal feed[J]. Chinese Journal of Animal Science, 2013, 49(13): 77-80.
[13] WANG H L, CHU H L, DING M,et al. Crystallization behavior of bamboo shoot shell/high-density polyethylene composites[J]. Journal of Reinforced Plastics and Composites, 2012,31(6): 405-413. DOI:10.1177/0731684 411431892.
[14] 关明杰,薛明慧. 化学处理对竹笋壳润湿性的影响[J]. 农业工程学报, 2016, 32(11): 309-314. DOI:10.11975/j.issn.1002-6819.2016.11.044. GUAN M J, XUE M H. Wettability of bamboo shoot shell under chemical treatment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(11): 309-314.
[15] SATYANARAYANA K G, ARIZAGE G G C, WYPYCH F. Biodegradable composites based on lignocellulosic fibers: an overview[J]. Progress in Polymer Science, 2009, 34(9):982-1021. DOI:10.1016/j.progpolymsci. 2008.12.002.
[16] 陈渊, 黄祖强, 谢祖芳,等. 机械活化玉米淀粉的微生物降解性能[J]. 农业工程学报, 2009, 25(4):293-298. CHEN Y, HUANG Z Q, XIE Z F, et al. Degradative characteristics by microorganisms of mechanical activated maize starch[J].Transactions of the CSAE,2009,25(4):293-298.
[17] 贺磊,卢雯皎,胡玉安,等. 改性淀粉接枝共聚酯丙乳液的制备与表征[J]. 林业工程学报,2016,1(3):54-57. HE L, LU W J, HU Y A, et al. Thye preparation and structure characterization of modified starch adhesive grafted with vinyl acetate-acrylate emulsion[J]. Journal of Forestry Engineering, 2016, 1(3): 54-57.
[18] 张琪, 常建民, 张继宗. 室内胶合板用生物油-淀粉胶黏剂的合成工艺[J]. 南京林业大学学报(自然科学版), 2014(6):121-124. DOI:10.3969/j.issn.1000-2006.2014.06.023. ZHANG Q, CHANG J M, ZHANG J Z.Synthesis technology of bio-oil starch adhesive for interior plywood[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014(6):121-124.
[19] 张小林, 刘毅, 罗明辉. 改性脲醛树脂对提高淀粉胶粘剂耐水性能的研究[J]. 中国胶粘剂, 2011, 20(11):6-10. DOI: 10.3969/j.issn.1004-2849.2011.11.002. ZHANG X L, LIU Y, LUO M H.Study on water resistance of starch adhesive increased by modified UF[J]. China Adhesives, 2011, 20(11):6-10.
[20] 吴义强, 李新功, 秦志永,等. 木纤维/聚乳酸可生物降解复合材料的制备和性能研究[J]. 中南林业科技大学学报,2012,32(1):100-103. DOI; 10.3969/j.issn.1673-923 X. 2012.01.021. WU Y Q, LI X G, QIN Z Y,et al. Study on fabrication and properties of wood fiber/poly-lactic acid biodegradable composites[J]. Journal of Central South University of Forestry & Technology, 2012, 32(1):100-103.
[21] 郭文静, 王正, 鲍甫成,等. 天然植物纤维/可生物降解塑料生物质复合材料研究现状与发展趋势[J]. 林业科学, 2008, 44(1):157-163. DOI: 10.3321/j.issn:1001-7488. 2008.01.025 GUO W J, WANG Z, BAO F C, et al. The status and trend of natural fiber/ biodegradable plastic bio-composites[J]. Scientia Silvae Sinicae, 2008, 44(1):157-163.
[22] 郑霞,李新功,吴义强,等. 竹纤维/聚乳酸可生物降解复合材料自然降解性能[J]. 复合材料学报, 2014, 31(2):362-367. ZHENG X, LI X G, WU Y Q, et al. Natural degradation properties of bamboo fibers/polylactic acid biodegrable composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 362-367.
[23] 温变英, 李晓媛, 张扬. 苎麻纤维/聚乳酸复合材料在不同pH环境下的水解行为[J]. 复合材料学报, 2015, 32(1): 54-60. DOI: 10.13801/j.cnki.fhclxb.20140421.003. WEN B Y, LI X Y, ZHANG Y. Hydroly behaviors of ramie fiber/ploylactic acid composites under different pH conditions [J]. Acta Materiae Compositae Sinica, 2015, 32(1): 54-60.
[24] MAHESWARI C U, REDDY K O, MUZENDA E, et al. Extraction and characterization of cellulose microfibrils from agricultural residue-Cocos nucifera L.[J]. Biomass & Bioenergy, 2012, 46(2):555-563. DOI:10.1016/ j.biombioe.2012.06.039.
[25] 崔永生,王训遒,宁卓远.淀粉基生物降解塑料制备研究进展[J].中国塑料,2014,28(8):1-6. CUI Y S, WANG X Q, NING Z Y. Progress in preparation of starch-based biodegradable plastics[J]. China Plastics, 2014, 28(8): 1-6.
[26] 于跃,张剑.纤维素酶降解纤维素机理的研究进展[J]. 化学通报,2016,79(2):118-122,128.DOI: 10.3969/j.issn. 1001-5132.2007.01.018. YU Y, ZHANG J. Research progress in cellulose degradation by cellulase[J]. Chemistry Online, 2016, 79(2): 118-122, 128.
[27] 李晨辉,杨岳,贾海峰,等.马来酸酐干法酯化淀粉胶黏剂制备及性能研究[J].广东化工,2016,43(12):5-7, 11.DOI:10.3969/j.issn.1007-1865.20 16. 12.003. LI C H, YANG Y, JIA H F, et al. Study on properties and preparation of maleic anhydride dry esterification starch adhesive[J]. Guangdong Chemical Industry, 2016, 43(12): 5-7, 11.
[28] 贾燕芳, 石伟勇.几种笋壳的化学成分及其纤维素特征[J].浙江大学学报(农业与生命科学版),2011,37(3): 338-342. DOI: 10.3785/j.issn.1008-9209.2011.03.016. JIA Y F, SHI W Y. Chemical compositions and natural cellulose fiber characteristics of several bamboo shoot shells[J]. Journal of Zhejiang University(Agric & Life Sci), 2011, 37(3): 338-342.

Memo

Memo:
收稿日期:2016-10-12 修回日期:2017-02-24
基金项目:江苏高校优势学科建设工程资助项目(PAPD)
第一作者:张志威(zhangzw19932@163.com)。*通信作者:关明杰(mingjieguan@126.com),副教授,博士。
引文格式:张志威,关明杰, 刘源松. 竹笋壳/脲醛树脂改性淀粉胶黏剂复合材料的降解特性[J]. 南京林业大学学报(自然科学版),2017,41(4):160-166.
Last Update: 1900-01-01