我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

森林土壤温室气体通量对森林管理和全球大气变化的响应(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017年04期
Page:
173-180
Column:
综合评述
column:
2017-07-31

Article Info:/Info

Title:
Response of forest soil greenhouse gases fluxes to forest management and global atmospheric change
Article ID:
1000-2006(2017)04-0173-08
Author:
高 菲高 雷崔晓阳*
东北林业大学林学院,黑龙江 哈尔滨 150040
Author(s):
GAO Fei GAO Lei CUI Xiaoyang*
College of Forestry, Northeast Forestry University, Harbin 150040, China
Keywords:
森林土壤 温室气体通量 森林管理 全球大气变化
Keywords:
forest soil greenhouse gas flux forest management global atmospheric change
Classification number :
S714
DOI:
10.3969/j.issn.1000-2006.2017.04.027
Document Code:
A
Abstract:
森林土壤是温室气体重要的源和汇。探讨不同森林管理和全球大气变化下土壤温室气体通量特征,为有效减少温室气体排放及森林可持续管理等提供参考。笔者从森林土壤温室气体(forest soil green house gases)、森林管理(forest mangement)和全球大气变化(global atmospheric change)3个关键研究点,查阅近年来相关研究成果,归纳森林管理和全球大气变化下土壤温室气体通量的一般性模式。CO2、CH4和N2O是3种重要温室气体,其通量间存在协同、消长和随机型耦合关系。森林管理如火烧、采伐和造林等显著影响土壤温室气体通量。一般情况下,火烧导致土壤N2O通量降低,CH4吸收量增加,CO2通量因火烧类型、火烧强度、生态系统类型不同出现增加、减低和无影响3种结果; 采伐通常导致土壤CO2、CH4和N2O排放增加; 造林可使土壤CO2排放减少,对N2O和CH4通量的影响随生态系统类型、造林树种等而改变。全球大气变化如CO2浓度升高、氮沉降和气温升高影响森林土壤温室气体通量。通常,CO2浓度升高导致土壤CO2和N2O排放量增加,CH4吸收量降低; 氮沉降促进土壤N2O排放、抑制CH4吸收。气温升高导致土壤CO2和N2O排放增加。森林管理和全球大气变化对土壤温室气体通量的综合影响是非叠加的,有效的森林管理可能改变土壤温室气体通量对全球大气变化的响应。
Abstract:
Forest soils are important sources and sinks of greenhouse gases(GHG). The objectives of this study were to explore the characteristics of forest soil GHG fluxes under different forest management practices and global atmospheric change, and to provide a reference for the reduction of GHG release and sustainable forest management. Publications were searched by using China Knowledge Resource Integrated Database, Wanfang Database, Science Direct, and Springer Link, using three keywords “forest soil greenhouse gases”, “forest management”, and “atmospheric change”. Papers reporting on forest soil GHGs were analyzed, and the general pattern of forest soil GHG fluxes under different forest management practices and global atospheric change scenarios was analyzed. CO2, CH4 and N2O are three important GHGs, and the coupling between them are complex including synergism, antagonism and random interactions. Forest soil GHG fluxes were affected by forest management practices, such as forest fire occurrence and suppression, cutting and afforestation. Forest fire occurrence generally decreased soil N2O flux, and increased soil CH4 absorption. Forest fires could enhance, reduce or show no effects on soil CO2 flux, depending on fire type, fire intensity and ecosystem type. Forest cutting usually increased soil CO2, N2O and CH4 emission. Afforestation might reduce soil CO2 emissions, where asits effects on N2O and CH4 varied with ecosystem type, planted tree species, etc. Generally, atmospheric change impacts that may affect forest soil GHG fluxes are elevated atmospheric CO2, nitrogen deposition, and rising temperatures. Elevated atmospheric CO2 increased soil CO2 and N2O emission, and decreased soil CH4 absorption. Nitrogen deposition stimulated soil N2O emissions, and suppressed soil CH4 absorption. Rising temperatures increased soil CO2 and N2O emissions. The combined effects of forest management practices and atmospheric change on forest soil GHG fluxes may be non-additive, and effective forest management may alter the response of soil GHG fluxes to atmospheric change.

References

[1] PARRY M L, CANZIANI O F, PALUTIKOF J P, et al. Climate change 2007: impacts, adaptation and vulnerability, contribution of Working Group II to the fourth assessment report of the Intergovernmental panel on climate change[M].Cambridge: Cambridge University Press, 2007.
[2] YONG S K, MAKOTO K, TAKAKAI F, et al. Greenhouse gas emissions after a prescribed fire in white birch-dwarf bamboo stands in northern Japan, focusing on the role of charcoal[J]. European Journal of Forest Research, 2011, 130(6):1031-1044. DOI: 10.1007/s10342-011-0490-8.
[3] LAL R. Forest soils and carbon sequestration[J]. Forest Ecology and Management, 2005, 220(1): 242-258. DOI: 10.1016/j.foreco.2005.08.015.
[4] FRASER R H, LI Z. Estimating fire-related parameters in boreal forest using SPOT VEGETATION[J]. Remote Sensing of Environment, 2002, 82(1): 95-110. DOI: 10.1016/S0034-4257(02)00027-5.
[5] ANDREAE M O, MERLET P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955-966. DOI: 10.1029/2000GB001382.
[6] 杨玉盛, 董彬, 谢锦升, 等. 森林土壤呼吸及其对全球变化的响应[J]. 生态学报, 2004, 24(3): 583-591. DOI: 10.3321/j.issn:1000-0933.2004.03.028. YANG Y S, DONG B, XIE J S, et al. Soil respiration of forest ecosystem s and its respondence to global change[J]. Acta Ecologica Sinica, 2004, 24(3): 583-591.
[7] 牟长城, 张博文, 韩丽冬, 等. 火干扰对小兴安岭白桦沼泽温室气体排放的短期影响[J]. 应用生态学报, 2011, 22(4): 857-865. DOI:10.13287/j.1001-9332.2011.0083. MOU C C, ZHANG B W, HAN L D, et al. Short-term effects of fire disturbance on greenhouse gases emission from Betula platyphylla forested wetland in Xiaoxing'an Mountains,Northeast China[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 857 -865.
[8] FEST B, WARDLAW T, LIVESLEY S J, et al. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape[J]. Global Change Biology, 2015, 21(11): 4250-4264. DOI: 10.1111/gcb.13003.
[9] SULLIVAN B W, KOLB T E, HART S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests[J]. Forest Ecology and Management, 2008, 255(12): 4047-4055. DOI: 10.1016/j.foreco.2008.03.051.
[10] 孙晓新, 牟长城, 冯登军,等. 排水造林对小兴安岭沼泽甲烷排放的影响[J]. 生态学报, 2009(8):4251-4259. DOI: 10.3321/j.issn:1000-0933.2009.08.028. SUN X X, MOU C C, FENG D J, et al. Effects of wetland draining for forestation on methane emissions in Xiaoxing'an Mountains, Northeast China[J]. Acta Ecologica Sinica, 2009, 29(8): 4251-4259.
[11] FEARNSIDE P M. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation[J]. Climatic Change, 2000, 46(1):115-158. DOI: 10.1023/A:1005569915357.
[12] REY A, PEGORARO E, TEDESCHI V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy[J]. Global Change Biology, 2002, 8: 851-866. DOI: 10.1080/03630260701758932.
[13] O'NEILL K P, KASISCHKE E S, RICHTER D D. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska[J]. Canadian Journal of Forest Research, 2002, 32(9): 1525-1541. DOI: 10.1139/x02-077.
[14] HANSON P J, EDWARDS N T, GARTEN C T, et al. Separating root and microbial contributions to soil respiration: a review of methods and observations[J]. Biogeochemistry, 2000, 48: 115-146. DOI: 10.1023/A:1006244819642.
[15] BOWDEN R D, NADELHOFFER K J, BOONE R D, et al. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest[J]. Canadian Journal of Forest Research, 1993, 23(7): 1402-1407. DOI: 10.1139/x93-177.
[16] BONAN G B. Physiological controls of the carbon balance of boreal forest ecosystems[J]. Canadian Journal of Forest Research, 1993, 23(7): 1453-1471. DOI: 10.1139/x93-183.
[17] KÖSTER E, KÖSTER K, BERNINGER F, et al. Carbon dioxide, methane and nitrous oxide fluxes from podzols of a fire chronosequence in the boreal forests in Värriö, Finnish Lapland[J]. Geoderma Regional, 2015(5): 181-187. DOI: 10.1016/j.geodrs.2015.07.001.
[18] 冯虎元, 程国栋, 安黎哲. 微生物介导的土壤甲烷循环及全球变化研究[J]. 冰川冻土, 2004, 26(4): 411-419. DOI: 10.3969/j.issn.1000-0240.2004.04.006. FENG H Y, CHENG G D, AN L Z. Microbial mediated soil methane cycling and global change[J]. Journal of Glaciology and Geocryology, 2004, 26(4): 411-419.
[19] FEST B J, LIVESLEY S J, VON FISCHER J C, et al. Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest[J]. Agricultural and Forest Meteorology, 2015, 201: 17-25. DOI: 10.1016/j.agrformet.2014.11.006.
[20] 耿世聪. 全球变化背景下长白山采伐恢复林地温室气体排放[D]. 北京: 中国科学院大学, 2013. GENG S C. Fluxes of CO2, CH4 and N2O for secondary forests in Changbai Mountain under the background of global change[D]. Beijing: The University of Chinese Academy of Sciences, 2013.
[21] SCHMIDT C S, HULTMAN K A, ROBINSON D, et al. PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition[J]. FEMS Microbiology Ecology, 2007, 61(2): 305-316. DOI: 10.1111/j.1574-6941.2007.00335.x.
[22] 方华军, 程淑兰, 于贵瑞, 等. 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制[J]. 生态学报, 2014, 34(17): 4799-4806. DOI: 10.5846/stxb201310262582. FANG H J, CHENG S L, YU G R, et al. Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review[J]. Acta Ecologica Sinica, 2014, 34(17): 4799-4806.
[23] 董云社, 彭公炳, 李俊. 温带森林土壤排放CO2, CH4, N2O时空特征[J]. 地理学报, 1996, 51(1): 120-128. DONG Y S, PENG G B, LI J. Seasonal variations of CO2, CH4, and N2O fluxes from temperate forest soil[J]. Acta Geographica Sinica, 1996, 51(1): 120-128.
[24] JASSAL R S, BLACK T A, ROY R, et al. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration[J]. Geoderma, 2011, 162(1): 182-186. DOI: 10.1016/j.geoderma.2011.02.002.
[25] MALJANEN M, JOKINEN H, SAARI A, et al. Methane and nitrous oxide fluxes, and carbon dioxide production in boreal forest soil fertilized with wood ash and nitrogen[J]. Soil Use and Management, 2006, 22(2): 151-157. DOI: 10.1111/j.1475-2743.2006.00029.x.
[26] KOBZIAR L N. The role of environmental factors and tree injuries in soil carbon respiration response to fire and fuels treatments in pine plantations[J]. Biogeochemistry, 2007, 84(2): 191-206. DOI: 10.1007/s10533-007-9118-y.
[27] 郭剑芬, 杨玉盛, 陈光水,等. 火烧对森林土壤有机碳的影响研究进展[J]. 生态学报, 2015,35(9):2800-2809. DOI: 10.5846/stxb201306101646. GUO J F, YANG Y S, CHEN G S, et al. A review of effects of fire on soil organic carbon in forests[J]. Acta Ecologica Sinica, 2015, 35(9): 2800-2809.
[28] KIM Y, TANAKA N. Effect of forest fire on the fluxes of CO2, CH4 and N2O in boreal forest soils, interior Alaska[J]. Journal of Geophysical Research, 2003, 108(1): 10-12. DOI: 10.1029/2001JD000663.
[29] LIVESLEY S J, GROVER S, HUTLEY LB, et al. Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia[J]. Agricultural & Forest Meteorology, 2011, 151(11): 1440-1452. DOI: 10.1016/j.agrformet.2011.02.001.
[30] FUMIAKI T, DESYATKIN A R, LARRY L C M, et al. Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia[J]. Soil Science & Plant Nutrition, 2008, 54(6): 938-949. DOI: 10.1111/j.1747-0765.2008.00309.x.
[31] SULLIVAN B W, KOLB T E, HART S C, et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA[J]. Biogeochemistry, 2011, 104(1): 251-265. DOI: 10.1007/s10533-010-9499-1.
[32] 李志龙. 内蒙古大兴安岭冻土温室气体通量对林火干扰的响应研究[D]. 呼和浩特: 内蒙古农业大学, 2012. LI Z L. Study of response of greenhouse gas flux of frozen soil to forest fire interference in area of great hingan mountains of Inner Mongolia[D]. Huhhot: Inner Mongolia Agricultural University, 2012.
[33] ANDERSON M, MICHELSEN A, JENSEN M, et al. Tropical savannah woodland: effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide[J]. Soil Biology and Biochemistry, 2004, 36(5): 849-858. DOI: 10.1016/j.soilbio.2004.01.015.
[34] ZHAO Y, WANG Y Z, XU Z H, et al. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia[J]. Biogeosciences, 2015, 12(21): 6279-6290. DOI: 10.5194/bg-12-6279-2015.
[35] INCLÁN R, URIBE C, SÁNCHEZ L, et al. N2O and CH4 fluxes in undisturbed and burned holm oak, scots pine and pyrenean oak forests in central Spain[J]. Biogeochemistry, 2012, 107(1):19-41. DOI: 10.1007/s10533-010-9520-8.
[36] 牟长城, 吴云霞, 李婉姝, 等. 采伐对小兴安岭落叶松-泥炭藓沼泽温室气体排放的影响[J]. 应用生态学报, 2010, 21(2): 287-293. MOU C C, WU Y X, LI W S, et al. Effects of forest cutting on greenhouse gas emissions from Larix gmelini-Sphagnum swamps in Lesser Xing'an mountains of Heilongjiang, China[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 287-293.
[37] KELLER M, VARNER R, DIAS J D, et al. Soil-atmosphere exchange of nitrous oxide, nitric oxide, methane, and carbon dioxide in logged and undisturbed forest in the Tapajos National Forest, Brazil[J]. Earth Interactions, 2005, 9(23): 1-28. DOI: 10.1175/EI125.1.
[38] ROBERTS S D, HARRINGTON C A, TERRY T A. Harvest residue and competing vegetation affect soil moisture, soil temperature, N availability, and Douglas-fir seedling growth[J]. Forest Ecology and Management, 2005, 205(1): 333-350. DOI: 10.1016/j.foreco.2004.10.036.
[39] MÄKIRANTA P, LAIHO R, PENTTILÄ T, et al. The impact of logging residue on soil GHG fluxes in a drained peatland forest[J]. Soil Biology and Biochemistry, 2012, 48: 1-9. DOI: 10.1016/j.soilbio.2012.01.005
[40] MISHUROV M, KIELY G. Nitrous oxide flux dynamics of grassland undergoing afforestation[J]. Agriculture, Ecosystems & Environment, 2010, 139(1): 59-65. DOI: 10.1016/j.agee.2010.07.001.
[41] BENANTI G, SAUNDERS M, TOBIN B, et al. Contrasting impacts of afforestation on nitrous oxide and methane emissions[J]. Agricultural and Forest Meteorology, 2014, 198: 82-93. DOI: 10.1016/j.agrformet.2014.07.014.
[42] 孙晓涵. 土壤温湿度对林地温室气体通量影响模拟试验[D]. 北京: 北京林业大学, 2012. SUN X H. The simulation experiment of soil temperature and water content affect forest soil greenhouse gas fluxes[D]. Beijing: Beijing Forestry University, 2012.
[43] BAGGS E M, RICHTER M, CADISCH G, et al. Denitrification in grass swards is increased under elevated atmospheric CO2[J]. Soil Biology and Biochemistry, 2003, 35(5): 729-732. DOI: 10.1016/S0038-0717(03)00083-X.
[44] REICH P B, KNOPS J M H, TILMAN D, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition[J]. Nature, 2001, 410: 809-812. DOI: 10.1038/35071062.
[45] INESON P, COWARD P A, HARTWIG U A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: the Swiss free air carbon dioxide enrichment experiment[J]. Plant and Soil, 1998, 198(1): 89-95. DOI: 10.1023/A:1004298309606.
[46] 李睿达, 张凯, 苏丹,等. 施氮对桉树人工林生长季土壤温室气体通量的影响[J]. 生态学报, 2015, 35(18):5931-5939. DOI: 10.5846/stxb201401120086. LI R D, ZHANG K, SU D, et al. Effects of nitrogen application on soil greenhouse gas fluxes in a Eucalyptus plantation during the growing season[J]. Acta Ecologica Sinica, 2015, 35(18): 5931-5939.
[47] JANSSENS I A, DIELEMAN W, LUYSSAERY S, et al. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322. DOI: 10.1038/ngeo844.
[48] KITZLER B, ZECHMEISTER-BOLTENSTERN S, HOLTERMANN C, et al. Nitrogen oxides emission from two beech forests subjected to different nitrogen loads[J]. Biogeosciences, 2006, 3(3): 293-310. DOI: 10.5194/bg-3-293-2006.
[49] KIM Y S, IMORI M, WATANABE M, et al. Simulated nitrogen inputs influence methane and nitrous oxide fluxes from a young larch plantation in northern Japan[J]. Atmospheric Environment, 2012, 46: 36-44. DOI: 10.1016/j.atmosenv.2011.10.034.
[50] ARONSON E L, HELLIKER B R. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis[J]. Ecology, 2010, 91(11): 3242-3251. DOI: 10.2307/20788157.
[51] BOUCHER O, FRIEDLINGSTEIN P, COLLINS B, et al. The indirect global warming potential and global temperature change potential due to methane oxidation[J]. Environmental Research Letters, 2009, 4: 044007. DOI: 10.1088/1748-9326/4/4/044007.
[52] BERGNER B, JOHNSTONE J, TRESEDER K K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology, 2004, 10(12): 1996-2004. DOI: 10.1111/j.1365-2486.2004.00868.x.
[53] 李娜. 增温和施氮肥对荒漠草原生态系统土壤温室气体能量的影响[D]. 呼和浩特: 内蒙古农业大学, 2010. LI N. Effect of warming and nitrogen addition on soil greenhouse gases fluxes of desert steppe ecosystem[D]. Huhhot: Inner Mongolia Agricultural University, 2010.
[54] 陈伏生, 余焜, 甘露, 等. 温度、水分和森林演替对中亚热带丘陵红壤氮素矿化影响的模拟实验[J]. 应用生态学报, 2009, 20(7): 1529-1535. CHEN F S, YU K, GAN L, et al. Effects of temperature, moisture and forest succession on nitrogen mineralization in hillside red soils in mid-subtropical region, China[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1529-1535.
[55] NIBOYET A, BROWN J R, DIJKSTRA P, et al. Global change could amplify fire effects on soil greenhouse gas emissions[J]. PLoS One, 2011, 6(6): e20105. DOI: 10.1371/journal.pone.0020105.
[56] NIBOYET A, BARTHES L, HUNGATE B A, et al. Responses of soil nitrogen cycling to the interactive effects of elevated CO2 and inorganic N supply[J]. Plant and Soil, 2010, 327(1): 35-47. DOI: 10.1007/s11104-009-0029-7.
[57] REICH P B, HOBBIE S E, LEE T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440(7086): 922-925. DOI: 10.1038/nature04486.
[58] SHAW M R, ZAVALETA E S, CHIARIELLO N R, et al. Grassland responses to global environmental changes suppressed by elevated CO2[J]. Science, 2002, 298(5600): 1987-1990. DOI: 10.1126/science.1075312.

Memo

Memo:
收稿日期:2016-03-24 修回日期:2017-04-12
基金项目:国家重点研发计划(2016YFA0600803); 国家自然科学基金重点项目(41330530); 中央高校基本科研业务费专项资金项目(2572016AA06)
第一作者:高菲(gaofei880922@126.com)。*通信作者:崔晓阳(c_xiaoyang@126.com),教授。
引文格式:高菲,高雷,崔晓阳. 森林土壤温室气体通量对森林管理和全球大气变化的响应 Symbol`@@ [J]. 南京林业大学学报(自然科学版),2017,41(4):173-180.
Last Update: 1900-01-01