我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

Soil microbial characteristics of Pinus taiwanensis and broad-leaved mixed forest at different altitudes in Fengyang Mountain(PDF)

Journal of Nanjing Forestry University(Natural Science Edition)[ISSN:1000-2006/CN:32-1161/S]

Issue:
2017 04
Page:
209-214
Column:
publishdate:
2017-07-31

Article Info:/Info

Title:
Soil microbial characteristics of Pinus taiwanensis and broad-leaved mixed forest at different altitudes in Fengyang Mountain
Article ID:
1000-2006(2017)04-0209-06
Author(s):
MENG Miaojing1ZHANG Jinchi1*GUO Xiaoping1WU Jiasen1ZHAO Youpeng1YE Lixin2LIU Shenglong12
1. Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
2.The Fengyang Mountain Management Office of Fengyang Mountain-Baishanzu National Nature Reserve in Zhejiang Province, Longquan 323700, China
Keywords:
Pinus taiwanensis broad-leaved mixed forest soil microbial functional diversity Biolog Eco plate altitude
Classification number :
S714.3
DOI:
10.3969/j.issn.1000-2006.201611044
Document Code:
A
Abstract:
【Objective】To study the soil physicochemical properties and the use of carbon sources by microorganisms, we investigated the effects of altitude change on soil microbial functional diversity in the Pinus taiwanensis broad-leaved mixed forest of Fengyang Mountain.【Method】Using the main distribution range from 1 000 m to 1 800 m of Pinus taiwanensis in Fengyang Mountain as the standard, we chose three altitude gradients, respectively: medium altitude(1 200 m), middle-high altitude(1 500 m), and high altitude(1 800 m). We selected the best site in each altitudinal gradient drainage, on a sunny, gentle gradient slope, with slow, moderate growth in three standard plots(20 m×20 m). We applied the method of Biolog Eco Plate to study the carbon utilization of soil microorganisms in this type of forest at different altitude gradients. We used non-metric multidimensional scaling(NMDS)to order and further analyze the use of various carbon sources by soil microbes. 【Result】① The soil microbial activity was the highest at the middle-high altitude, whereas the soil microbial diversity index did not change significantly with altitude(P>0.05).② In the study area, the main types of carbon source used were carbohydrates(CH), amino acids(AA), and polymers(PM).The utilization rate of phenolic acids(PA)and amine(AM)carbon sources varied with altitude. There were significant differences in the utilization of the carbon source carboxylic acid(CA)at different altitudes. The NMDS ordination showed that the use of six carbon sources varied with the change in altitude(P<0.05).③The soil nutrient content was the highest in the middle-high altitude areas, and the redundancy analysis showed that there was a strong correlation between the physicochemical properties of soil and the utilization of carbon. 【Conclusion】In the middle-high altitude areas, soil microbes have a strong effect on the utilization of various carbon sources, and the change in soil physical and chemical properties is an important factor affecting the utilization of carbon sources.

References

[1] 董立国, 蒋齐, 蔡进军, 等. 基于Biolog Eco技术不同退耕年限苜蓿地土壤微生物功能多样性分析[J]. 干旱区研究, 2011, 28(4): 630-637.DOI:10.13866/j.azr.2011.04.007. DONG L G, JIANG Q, CAI J J, et al. Analysis on functional diversity of edaphon communities in Medicago sativa fields of different growth years based on Biolog Eco plates[J]. Arid Zone Research, 2011, 28(4): 630-637.
[2] BOSSIO D A, SCOW K M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils[J]. Appl Environ Microbial, 1995, 61(11): 4043-4050.
[3] 张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N沉降的响应[J]. 植物生态学报, 2007, 31(2): 252-261.DOI:10.17521/cjpe.2007.0029. ZHANG N L, GUO J X, WANG X Y, et al. Soil microbial feedbacks to climate warming and atmospheric n deposition[J]. Chinese Journal of Plant Ecology, 2007, 31(2): 252-261.
[4] SAETRE P, BÅÅTH E. Spatial variation and patterns of soil microbial community structure in a mixed spruce-birch stand[J]. Soil Biology and Biochemistry, 2000, 32(7): 909-917.DOI: 10.1016/S0038-0717(99)00215-1.
[5] 鲁顺保, 张艳杰, 陈成榕, 等. 基于BIOLOG指纹解析三种不同森林类型土壤细菌群落功能差异[J]. 土壤学报, 2013, 50(3): 618-623. DOI: 10.11766/trxb201205030156. LU S B, ZHANG Y J, CHEN C R, et al. Analysis of functional differences between soil bacterial communities in three different types of forest soils based on Biolog fingerprint[J]. Acta Pedologica Sinica, 2013, 50(3): 618-623.
[6] LIU Z, FU B, ZHENG X, et al. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study[J]. Soil Biology and Biochemistry, 2010, 42(3): 445-450. DOI:10.1016/j.soilbio.2009.11.027.
[7] CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Applied Soil Ecology, 2015, 92: 35-44.DOI:10.1016/j.apsoil.2015.01.018.
[8] 马驿, 彭金菊, 王芸, 等. 环丙沙星对土壤微生物量碳和土壤微生物群落碳代谢多样性的影响[J]. 生态学报, 2013, 33(5): 1506-1512. DOI: 10.5846/stxb201208071113. MA Y, PENG J J, WANG Y, et al. Effects of ciprofloxacin on microbial biomass carbon and carbon metabolism diversity of soil microbial communities [J]. Acta Ecologica Sinica, 2013, 33(5): 1506-1512.
[9] 韩冬雪, 王宁, 王楠楠, 等. 不同海拔红松林土壤微生物功能多样性[J]. 应用生态学报, 2015, 26(12): 3649-3656. HAN D X, WANG N, WANG N N, et al. Soil microbial functional diversity of different altitude Pinus koraiensis forests[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3649-3656.
[10] 赵艳艳. 高寒草甸典型植物对增温和模拟放牧的生理生态响应的研究[D]. 北京:中国科学院大学, 2016. ZHAO Y Y. Study on physiological and ecological responses of typical alpine meadow plants to simulated grazing [D]. Beijing: The University of Chinese Academy of Sciences,2016.
[11] 马元屾, 王中生, 余华, 等. 不同海拔梯度下黄山松与马尾松针叶形态·光合生理特性的研究[J]. 安徽农业科学, 2012,40(29): 14155-14158,14173. DOI:10.3969/j.issn.0517-6611.2012.29.001. MA Y S, WANG Z S, YU H, et al. A study in photosynthetic physiological and morphologic parameters of needles of Pinus taiwanensis and Pinus massoniana in different elevation along altitudinal gradients[J]. Journal of Anhui Agricultural Sciences, 2012, 40(29): 14155-14158, 14173.
[12] 王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016, 52(1): 150-158. DOI: 10.3321/j.issn.1001-7488.20160118. WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Pinus koraiensis mixed forests along elevation gradient[J]. Scientia Silvae Sinicae, 2016, 52(1): 150-158.
[13] 李曼,郑媛,郭英荣,等. 武夷山不同海拔黄山松枝叶大小关系[J]. 应用生态学报,2017,28(2):537-544.DOI: 10.13287/j.1001-9332.201702.039. LI M,ZHENG Y,GUO Y R,et al. Scaling relationships between twig size and leaf size of Pinus taiwanensis along an altitudinal gradient in Wuyi Mountains,China[J] Chinese Journal of Applied Ecology,2017,28(2):537-544.
[14] GUO X, MENG M, ZHANG J, et al. Vegetation change impacts on soil organic carbon chemical composition in subtropical forests[J]. Scientific Reports, 2016, 6(1).DOI: 10.1038/srep29607.
[15] 李淑娴, 谭艳, 陈颖, 等. 黄山松不同生理生化指标随海拔高度变化趋势[J]. 东北林业大学学报, 2010, 38(6): 9-10,34.DOI: 2010,38(6):9-10. LI S X, TAN Y, CHEN Y, et al. Variation trends of physiological and biochemical indexes of Pinus taiwanensis with increasing elevation[J]. Journal of Northeast Forestry University, 2010, 38(6): 9-10,34.
[16] 苏松锦, 刘金福, 兰思仁, 等. 黄山松研究综述(1960-2014)及其知识图谱分析[J]. 福建农林大学学报(自然科学版),2015, 44(5): 478-486. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2015.05.006. SU S J, LIU J F, LAN S R, et al. A review of Pinus taiwanensis studies(1960-2014)and the knowledge domain analysis[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2015, 44(5): 478-486.
[17] 刘金福,朱德煌,兰思仁, 等.戴云山黄山松群落与环境的关联[J].生态学报,2013,33(18):5731-5736. DOI:10.5846/stxb201304270832. LIU J F, ZHU D H, LAN S R, et al. Association between environment and community of Pinus taiwanensis in Daiyun Mountain[J]. Acta Ecologica Sinica, 2013, 33(18):5731-5736.
[18] 陈茂铨, 王根轩, 刘术新, 等. 合成革主要化学污染物对黄山松生理生态特性的浓度效应研究[J]. 植物生态学报, 2011,35(1): 66-72. DOI:10.3724/SP.J.1258.2011.00066. CHEN M Q, WANG G X, LIU S X, et al. Impacts of different concentrations of main pollutants from the synthetic leather industry on the physiology and ecology of Pinus taiwanensis[J]. Chinese Journal of Plant Ecology, 2011, 35(1): 66-72.
[19] 毕晓丽, 洪伟, 吴承祯, 等. 黄山松种群统计分析[J]. 林业科学, 2002, 38(1): 61-67. DOI:10.3321/j.issn:1001-7488.2002.01.010. BI X L, HONG W, WU C Z, et al. Population statistics analysis of Pinus taiwanensis[J]. Scientia Silvae Sinicae, 2002, 38(1): 61-67.
[20] 张利锐, 彭艳玲, 任广朋, 等. 马尾松和黄山松两个核基因位点的群体遗传多样性和种间分化[J]. 植物生态学报, 2011,35(5): 531-538.DOI:10.3724/SP.J.1258.2011.00531. ZHANG L R, PENG Y L, REN G P, et al. Population genetic diversity and species divergence of Pinus massoniana and Pinus taiwanensis at two nucleotide loci[J]. Chinese Journal of Plant Ecology, 2011, 35(5): 531-538.
[21] 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000.
[22] GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization [J]. Appl Environ Microbial, 1991, 57(8): 2351-2359.
[23] KONG W D, ZHU Y G, FU B J, et al. Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil[J]. Pedosphere, 2008, 18(6): 801-808. DOI:10.1016/S1002-0160(08)60076-4.
[24] 董艳, 杨智仙, 董坤, 等. 施氮水平对蚕豆枯萎病和根际微生物代谢功能多样性的影响[J]. 应用生态学报, 2013, 24(4):1101-1108. DONG Y, YANG Z X, DONG K, et al. Effects of nitrogen application rate on Fava bean fusarium wilt and rhizospheric microbial metabolic functional diversity[J]. Chinese Journal of Applied Ecology, 2013, 24(4): 1101-1108.
[25] 于健, 徐倩倩, 刘文慧, 等. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24-35. DOI:10.17521/cjpe.2015.0216. YU J, XU Q Q, LIU W H, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountains, northeast China[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 24-35.
[26] 秦燕燕,李金花,王刚,等.添加豆科植物对弃耕地土壤微生物多样性的影响[J].兰州大学学报(自然科学版),2009,45(3):55-60. DOI:10.3321/j.issn:0455-2059.2009.03.011. QIN Y Y, LI J H, WANG G, et al. Effects of sowing Legume species on functional diversity of soil microbial communities in abandoned fields[J]. Journal of Lanzhou University,2009,45(3):55-60.
[27] 刘秉儒. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J]. 生态环境学报, 2010, 19(4): 883-888.DOI:10.3969/j.issn.1674-5906.2010.04.025. LIU B R. Changes in soil microbial biomass carbon and nitrogen under typical plant communities along an altitudinal gradient in east side of Helan Mountains[J]. Ecology and Environmental Sciences, 2010, 19(4): 883-888.
[28] 吴则焰, 林文雄, 陈志芳, 等. 中亚热带森林土壤微生物群落多样性随海拔梯度的变化[J]. 植物生态学报, 2013, 37(5):397-406. DOI:10.3724/SP.J.1258.2013.00041. WU Z Y, LIN W X, CHEN Z F, et al. Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 397-406.
[29] 吕世丽, 李新平, 李文斌, 等. 牛背梁自然保护区不同海拔高度森林土壤养分特征分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4): 161-168,177. LV S L, LI X P, LI W B, et al. Forest soil nutrient characteristics at different altitudes in Niubeiliang National Natural Reserve[J]. Journal of Northwest A & F University(Natural Science Edition), 2013, 41(4): 161-168,177.
[30] 胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展[J]. 土壤通报, 2006, 37(1): 170-176. DOI:10.3321/j.issn:0564-3945.2006.01.038. HU Y L, WANG S L, YAN S K. Research advances on the factors influencing the activity and community structure of soil microorganism[J]. Chinese Journal of Soil Science, 2006, 37(1): 170-176.

Last Update: 1900-01-01