我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

Modelling outer crown profile for planted Pinus koraiensis and Larix olgensis trees in Heilongjiang Province, China(PDF)

Journal of Nanjing Forestry University(Natural Science Edition)[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018 03
Page:
10-18
Column:
publishdate:
2018-05-15

Article Info:/Info

Title:
Modelling outer crown profile for planted Pinus koraiensis and Larix olgensis trees in Heilongjiang Province, China
Article ID:
1000-2006(2018)03-0010-09
Author(s):
GAO Huilin DONG Lihu LI Fengri*
School of Forestry, Northeast Forestry University, Harbin 150040, China
Keywords:
Keywords:Pinus koraiensis Larix olgensis outer crown profile segmented polynomial equation modified Kozak equation modified Weibull equation mixed-effects model
Classification number :
S758.1
DOI:
10.3969/j.issn.1000-2006.201703112
Document Code:
A
Abstract:
Abstract: 【Objective】The Pinus koraiensis Sieb. et Zucc(Korean pine)and Larix olgensis Henry(Olgan larch)are the main afforesting tree species in Heilongjiang Province. Developing outer crown profile models for the two tree species will provide references for forest management of plantations. 【Methods】The branches from 50 trees of planted Korean pine and Olgan larches were used. The segmented polynomial equation, modified Kozak equation, and modified Weibull equation were used as the basic model, and a nonlinear mixed-effects model at the tree level was developed. The crown profiles of the two tree species were compared. 【Results】For both tree species, the segmented polynomial predicted model, included diameter at breast height(DBH), crown length(CL), crown ratio(CR), and height to diameter ratio(HD), the modified Kozak predicted model included DBH, CR and HD, and the modified Weibull predicted model included DBH, CR and HD. By including mixed-effects into the models, the goodness of fit for all the models was improved compared with the basic models. The modified Weibull equation performed best for both Korean pine and Olgan larch. However, there was not a large difference between the modified Kozak equation, Weibull equation, and the segmented polynomial equation. As for the Korean pine, the crown radius of the lower crown estimated by the segmented polynomial predicted model was lower than that of the modified Kozak and Weibull equation, whereas the differences between the three models for the Olgan larch were relatively less. 【Conclusion】 The segmented polynomial equation, modified Kozak, and modified Weibull equation performed well in crown profile modeling with high accuracy. Fewer variables were included in the modified Kozak equation and modified Weibull equation than the segmented polynomial equation. The parameter estimation for the modified Kozak and Weibull equation were also stable, and the crown volume and surface area were easy to calculate by integration.

References

[1] GILL S J, BIGING G S. Autoregressive moving average models of crown profiles[J]. Ecological Modelling, 2002, 152: 213-226.
[2] SOTO-CERVANTES J A, LÓPEZ-SÁNCHEZ C A, CORRAL-RIVASJ J. Development of crown profile models for Pinus cooperi Blanco in the UMAFOR 1008, Durango, México[J]. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 2016, 22(2): 179-192. DOI: 10.5154/r.rchscfa.2015.09.040.
[3] ATTOCCHI G, SKOVSGAARD J P. Crown radius of pedunculate oak(Quercus robur L.)depending on stem size, stand density and site productivity[J]. Scandinavian Journal of Forest Research, 2015, 30(4): 289-303. DOI: org/10.1080/02827581.201.
[4] LI F R. Modeling crown profile of Larix olgensis trees[J]. Scientia Silvae Sinicae,2004, 40(5): 16-24.
[5] HATCH C R, GERRARD D J, TAPPEINER II J C. Exposed crown surface area: a mathematical index of individual tree growth potential[J]. Canadian Journal of Forest Research, 1975, 5(2): 224-228. DOI:10.1139/x75-030.
[6] HONER T G. Crown shape in open-and forest-grown balsam fir and black spruce[J]. Canadian Journal of Forest Research, 1971(1): 203-207.
[7] CRECENTE-CAMPO F, ÁLVAREZ-GONZÁLEZ J G, CASTEDO-DORADO F, et al. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain[J]. Forestry, 2013, 86: 481-491. DOI:10.1093/forestry/cpt019.
[8] RAULIER F, UNG C H, OUELLET D. Influence of social status on crown geometry and volume increment in regular and irregular black spruce stands[J]. Canadian Journal of Forest Research, 1996, 26(10): 1742-1753. DOI:10.1139/x26-198.
[9] HANN D W. A adjustable predictor of crown profile for stand-growth Douglas-fir trees[J]. Forest Science, 1999, 45(2): 217-225.
[10] CRECENTE-CAMPO F, MARSHALL P, LEMAY V, et al. A crown profile model for Pinus radiata D. Don in northwestern Spain[J]. Forest Ecology and Management, 2009, 257(12): 2370-2379. DOI:10.1016/j.foreco.2009.03.038.
[11] RAUTIAINEN M, STENBERG P. Simplified tree crown model using standard forest mensuration data for Scots pine[J]. Agricultural and Forest Meteorology, 2005, 128(1): 123-129.DOI:10.1016/j.agrformet.2004.09.002.
[12] 卢军. 帽儿山天然次生林树冠结构和空间优化经营[D]. 哈尔滨:东北林业大学, 2008. LU J. Crown structure and optimal spatial management for secondary forest in Maoershan Mountain[D]. Harbin: Northeast Forestry University, 2008.
[13] HANN D W, BLUHM A A, HIBBS D E. Development and evaluation of the tree-level equations and their combined stand-level behavior in the Red Alder Plantation Version of ORGANON[EB/OL].(2001-01)
[2017-02].http://www.research gate.net/puslication/259496044.
[14] 郭艳荣,吴保国,郑小贤,等. 杉木不同龄组树冠形态模拟模型研究[J]. 北京林业大学学报, 2015, 37(2): 40-47. DOI:10.13332 /j.cnki.jbfu.2015.02.007. GUO Y R, WU B G, ZHENG X X, et al. Simulation model of crown profile for Chinese fir(Cunninghamia lanceolata)indifferent age groups[J]. Journal of Beijing Forestry University, 2015, 37(2): 40-47.
[15] DONG C, WU B, WANG C,et al. Study on crown profile models for Chinese fir(Cunninghamia lanceolata)in Fujian Province and its visualization simulation[J]. Scandinavian Journal of Forest Research, 2015, 31: 302-313. DOI:10.1080/02827581.2015.1081982.
[16] BALDWIN V C, PETERSON K D. Predicting the crown shape of loblolly pine trees[J]. Canadian Journal of Forest Research, 1997, 27(1): 102-107. DOI:10.1139/cjfr-27-1-102.
[17] 高慧淋,李凤日,董利虎. 基于分段回归的人工红松冠形预估模型[J]. 北京林业大学学报, 2015, 37(3):76-83. DOI: 10.13332/j.1000-1522.20140324. GAO H L, LI F R, DONG L H. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. Journal of Beijing Forestry University, 2015, 37(3): 76-83.
[18] KOZAK A. A variable-exponent taper equation[J]. Canadian Journal of Forest Research, 1988, 18(11): 1363-1368. DOI:10.1139/x88-213.
[19] KOZAK A. My last words on taper equations[J]. The Forestry Chronicle, 2004, 80(4): 507-515. DOI:10.5558/tfc80507-4.
[20] WEISKITTEL A R, SEYMOUR R S, HOFMEYER P V, et al. Modelling primary branch frequency and size for five conifer species in Maine, USA[J]. Forest Ecology and Management, 2010, 259: 1912-1921. DOI:10.1016/j.foreco.2010.01.052.
[21] FERRARESE J, AFFLECK D, SEIELSTAD C. Conifer crown profile models from terrestrial laser scanning[J]. Silva Fennica, 2015, 49(1):230-239. DOI:10.14214/sf.1106.
[22] MARSHALL D D, JOHNSON G P, HANN D W. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J]. Canadian Journal of Forest Research, 2003, 33(11): 2059-2066. DOI:10.1139/x03-126.
[23] TIMOTHY M A, HAROLD B E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976(3): 283-289.
[24] 高慧淋,董利虎,李凤日. 基于混合效应的人工落叶松树冠轮廓模型[J]. 林业科学, 2017, 53(3): 84-93. DOI: 10.11707 /j.1001-7488.20170310. GAO H L, DONG L H,LI F R. Crown shape model for Larix olgensis plantation based on mixed effect[J]. Scientia Silvae Sinicae, 2017, 53(3): 84-93.

Last Update: 2018-06-06