我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

基于抚育间伐效应的长白落叶松人工林单木直径生长模型(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年03期
Page:
28-36
Column:
专题报道(Ⅰ)
publishdate:
2018-05-15

Article Info:/Info

Title:
Modelling individual tree diameter growth for Larix olgensis based on thinning effects
Article ID:
1000-2006(2018)03-0028-09
Author(s):
WANG Meng12 LI Fengri1*
1.College of Forestry, Northeast Forestry University, Harbin 150040, China; 2. Kunming Survey & Design Institute of State Forestry Administration, Kunming 650216, China
Keywords:
Keywords:individual tree diameter growth model linear mixed-effects model Larix olgensis thinning effects
Classification number :
S758
DOI:
10.3969/j.issn.1000-2006.201706038
Document Code:
A
Abstract:
【Objective】The objectives of the paper were to analyze and simulate the effects of thinning on the individual tree diameter growth of Larix olgensis in plantation.【Methods】Based on the remeasured data of 10 permanent plots in Mengjiagang Forest Farm and Jiangshanjiao Forest Farm of Heilongjiang Province, a distance-independent individual tree diameter growth model based on thinning effects for Larix olgensis was developed to quantify the effects of thinning. The diameter growth model for Larix olgensis was defined as a single-level linear mixed-effects model with a random plot effect. The AIC and BIC statistics and Likelihood ratio test were used for model comparison and selection, and the models were tested by using independent sample data. 【Results】The individual tree diameter growth increased with the increasing thinning intensities for young stands under the same site index, but the thinning effects for individual tree diameter growth was not significant for stands of greater age. The individual tree growth increased with diameter classes for smaller trees. The significant independent variables of the individual tree diameter growth models were the square of diameter at breast height(DBH), the natural logarithm of DBH, the basal area of trees larger than the subject tree, site index, thinning age, and thinning intensity. The AIC and BIC statistics and root mean square error(RMSE)of the best individual tree diameter growth mixed-effects model were less than those of the general linear model for Larix olgensis. The best linear mixed-effects model and general linear model of individual tree diameter growth for Larix olgensis achieved an efficiency of 0.678 and 0.624, respectively, when tested by using independent sample data. 【Conclusion】The fitting and testing results showed that the best linear mixed-effects model was better than the general linear model for individual diameter growth for Larix olgensis. The best linear mixed-effects model can quantify the effects of thinning on the individual tree diameter growth of Larix olgensis.

References

[1] FOX J C, BI H Q, ADES P K. Spatial dependence and individual-tree growth models I. Characterising spatial dependence[J]. Forest Ecology and Management, 2007, 245: 10-19.
[2] FOX J C, BI H Q, ADES P K. Spatial dependence and individual-tree growth models II. Modelling spatial dependence[J]. Forest Ecology and Management, 2007, 245: 20-30.
[3] BIGING G S, DOBBERTIN M. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees[J]. Forest Science, 1992, 38: 695-720.
[4] NACHTMANN G. A semi-distance-dependent individual tree growth model for coppice forests in Austria[J]. Austrian Journal of Forest Science, 2011, 128: 133-156.
[5] PALAHÍ M, PUKKALA T, MIINA J, et al. Individual-tree growth and mortality models for Scots pine(Pinus sylvestris L.)in north-east Spain[J]. Annals of Forest Science, 2003, 60: 1-10.
[6] CAO V. Prediction of annual diameter growth and survival for individual trees from periodic measurements[J]. Forest Science, 2000, 46: 127-131.
[7] 姜立春, 杜书立. 基于非线性混合模型的东北兴安落叶松树高和直径生长模拟[J]. 林业科学研究, 2012,25(1):11-16. JIANG L C, DU S L. Height and diameter growth modeling of dahurian larch based on nonlinear mixed model in Northeastern China[J]. Forest Research,2012, 25(1): 11-16.
[8] BOHORA S B, CAO Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. Forest Ecology and Management, 2014, 319: 62-66.
[9] 芦海涛, 李凤日, 贾炜玮. 水曲柳单木生长模型的研究[J]. 森林工程, 2011,27(3):5-8. LU H T, LI F R, JIA W W. Reasearch on individual tree growth model of manchurian ash[J]. Forest Engineering, 2011, 27(3): 5-8.
[10] 邱学清, 江希钿, 黄健儿, 等. 杉木人工林竞争指数及单木生长模型的研究[J]. 福建林学院学报, 1992,12(3):309-316. QIU X Q, JIANG X D, HUANG J E, et al. Study of competitive index and individual growing model of Chinese fir plant population[J]. Journal of Fujian College of Forestry, 1992, 12(3): 309-316.
[11] 王文斗, 李凤日, 那冬晨, 等. 辽东栎单木生长模型的研究[J]. 林业科技, 2005,30(2):11-13. WANG W D, LI F R, NA D C, et al. Research on the individual tree growth model of Quercus liaotungensis[J]. Forestry Science and Technology, 2005, 30(2): 11-13.
[12] 杨波, 童书振. 杉木间伐后直径生长竞争模型的建立及应用[J]. 林业科学研究, 1993,6(2):210-215. YANG B, TONG S Z. The competitive model of diameter growth of Chinese fir(Cumminghamia lanceolata Hook)after thinning and its applications[J]. Forest Research, 1993, 6(2): 210-215.
[13] 覃阳平, 张怀清, 陈永富, 等. 改进的简单竞争指标在单木生长模型中的应用[J]. 东北林业大学学报, 2014,42(12):130-133. QIN Y P, ZHANG H Q, CHEN Y F, et al. Improved hegyi simple competition index in individual tree model[J]. Journal of Northeast Forestry University, 2014,42(12): 130-133.
[14] 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012,48(3):66-73. LI C M. Individual tree diameter increment model for Chinese fir plantaion based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66-73.
[15] 雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009,45(1):74-80. LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74-80.
[16] 李春明. 随机截距效应在模拟杉木人工林单木胸径生长量中的应用[J]. 北京林业大学学报, 2011,33(4):7-12. LI C M. Using random intercept effects in DBH increment model of individual trees for fir plantation[J]. Journal of Beijing Forestry University, 2011, 33(4): 7-12.
[17] HYNYNEN J. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models[J]. Silva Fennica, 1995, 29:225-246.
[18] ANDREASSEN K, TOMTER S M. Basal area growth models for individual trees of Norway spruce, Scots pine, birch and other broadleaves in Norway[J]. Forest Ecology and Management, 2003, 180: 11-24.
[19] GALECKI A, BURZYKOWSKI T. Linear mixed-effects models using R[M]. New York: Springer Texts in Statistics Engineer, 2013
[20] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19: 716-723.
[21] AKAIKE H. Factor analysis and AIC[J]. Psychometrika, 1987, 52: 317-332.
[22] DARINGTON R B. Multiple regression in psychological research and practice[J]. Psychological Bulletin, 1968, 69:161.
[23] SAWA T. Information criteria for discriminating among alternative regression models[J]. Econometrica, 1978, 46: 1273-1291.
[24] ADAME P, HYNYNEN J, CAÑELLAS I, et al. Individual-tree diameter growth model for rebollo oak(Quercus pyrenaica Willd.)coppices[J]. Forest Ecology & Management, 2008, 255: 1011-1022.
[25] CALAMA R, MONTERO G. Multilevel linear mixed model for tree diameter increment in Stone pine(Pinus pinea): a calibrating approach[J]. Silva Fennica, 2004, 39: 37-54.

Last Update: 2018-06-06