我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

A study on geographic variation in wood microfibril angle of Cyclocarya paliurus(PDF)

Journal of Nanjing Forestry University(Natural Science Edition)[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018 03
Page:
81-85
Column:
lw
publishdate:
2018-05-15

Article Info:/Info

Title:
A study on geographic variation in wood microfibril angle of Cyclocarya paliurus
Article ID:
1000-2006(2018)03-0081-05
Author(s):
SUN Daiyan1 YANG Wanxia12 LIU Qingliang1 FANG Shengzuo12*
1.College of Forestry, Nanjing Forestry University, Nanjing 210037,China; 2.Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037,China
Keywords:
Keywords:Cyclocarya paliurus microfibril angle provenance growth ring wood property
Classification number :
S759; TS653
DOI:
10.3969/j.issn.1000-2006.201606005
Document Code:
A
Abstract:
Abstract: 【Objective】Cyclocarya paliurus, the sole species in its genus, is a highly valued tree species with multiple functions in China. Studies on the variation of the microfibril angle of the wood of Salix. Salix can provide a basis for the selection of C. paliurus genotypes in timber forests. 【Mothed】 Based on the wood cores sampled from different natural populations, geographic variation and growth ring variation in wood microfibril angle(MFA)of C. paliurus were investigated using the X-ray diffraction technique. 【Result】 Significant variation was observed among 22 C. paliurus provenances and growth rings. Mean MFA at the breast height was 15.8° for all tested provenances, ranging from 13.4° to 20.1° when the tree age was 21 years. The wood of the Sichuan Muchuan population showed the lowest MFA, while the highest MFA was observed in Guangxi Guilin. Compared with the mean value of the 22 provenances, the MFA of Sichuan Muchuan decreased by 15.2%, but increased by 27.2% for Guangxi Guilin vs CK. The MFA of C. paliurus is affected by both latitude and longitude, and the geographic variation decreased on both sides, that is the East and West of the central longitude, 112° E, but increased on both sides, that is, the South and North of the central latitude, 29° N. MFA at breast height significantly varied among the growth rings, with a consistent pith-to-bark trend of declining angles. The relationship between MFA and growth ring could be best described by an exponential function. 【Conclusion】 Our results indicated that the MFA was relatively stable after 15 years, suggesting that there exists a great opportunity to improve wood quality of C. paliurus through selection of trees with low MFA.

References

[1] 方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J].南京林业大学学报(自然科学版),2007, 31(1): 95-100.DOI:10.3969/j.issn.1000-2006.2007.01.023. FANG S Z, FU X X. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(1): 95-100.
[2] 邓波,杨万霞,方升佐,等.青钱柳幼龄期生长与木材性状表现及其性状相关分析[J]. 南京林业大学学报(自然科学版),2014, 38(5): 113-117. DOI:10.3969/j.issn.1000-2006.2014.05.022. DENG B, YANG W X, FANG S Z, et al. Growth and wood properties of juvenile Cyclocarya paliurus, and their correlation analysis[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(5): 113-117.
[3] DENG B, FANG S Z, YANG W X, et al. Provenance variation in growth and wood properties of juvenile Cyclocarya paliurus[J]. New Forests, 2014, 45:625-639. DOI:10.1007/s11056-014-9424-x.
[4] DENG B, SHANGX L, FANG S Z, et al. Integrated effects of light intensity and fertilization on growth and flavonoid accumulation in Cyclocarya paliurus[J]. Journal of Agricultural and Food Chemistry, 2012, 31(9): 6286-6292. DOI:10.1021/jf301525s.
[5] WANG Q Q, JIANG C H, FANG S Z, et al. Antihyperglycemic, antihyperlipidemic and antioxidant effects of ethanol and aqueous extracts of Cyclocarya paliurus leaves in type 2 diabetic rats[J]. Journal of Ethnopharmacology, 2013, 150: 1119-1127. DOI:10.1016/j.jep.2013.10.040.
[6] 连雷龙. 青钱柳的栽培技术[J]. 林业科技开发, 2003, 17(3): 51-52. DOI:10.3969/j.issn.1000-8101.2003.03.025. LIAN L L. Cultivation techniques of Cyclocarya paliurus[J]. China Forestry Science and Technology, 2003, 17(3): 51-52.
[7] JORDAN L, HALL D B. Variation in loblolly pine ring microfibril angle in the southeastern United States[J]. Wood and Fiberence, 2007, 39(2): 352-363.
[8] ROBERT E, JUGO I. Rapid prediction of wood stiffness from microfibril angle and density[J]. Forest Products Journal, 2001, 51(3): 53-57.
[9] 刘清亮, 李垚, 方升佐. 基于MaxEnt模型的青钱柳潜在适宜栽培区预测[J]. 南京林业大学学报(自然科学版), 2017, 41(4):25-29. DOI:10.3969/j.issn.1000-2006.201608010. LIU Q L, LI Y, FANG S Z. MaxEnt model-based identification of potential Cyclocarya paliurus cultivation regions [J]. Journal of Nanjing Forestry University( Natural Sciences Edition), 2017, 41(4):25-29.
[10] SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794. DOI:10.1177/004051755902901003.
[11] WALKER J C F, BUTTERFIELD B G. The important of micorifibril angle for the processing industries[J]. New Zealand Forestry, 1995, 40(4): 34-40.
[12] HIRABAWA Y, YAMASHITA K, FUJSAWA Y, et al. The effects of S2 microfibril angles and density on MOE in Sugi tree logs[C]//Butterfield B G. Microfibril angle in wood. New Zealand, Chrit Church, 1998:312-322.
[13] CAVE I D, WALKER J C F. Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle[J]. Forest Products of Journal, 1994, 44(5): 43-48.
[14] 郭德荣,杨彩民,林彦. 人工林红松纤维丝角变异与管胞长度和拉伸强度的关系[J]. 东北林业大学学报, 1982, 10(2): 39-47. GUO D R, YANG C M, LIN Y. The relationship between the fibrillar angles' variation of the man-planted Korean pines and tracheid length as well as tensile strength[J]. Journal of Northeast Forestry University, 1982, 10(2): 39-47.
[15] SAKA S. Relationship between microfibrillar angles and lignin content in the S2 layer of softwood tracheids[J]. Cellulose chemistry and technology, 1987, 21(3): 225-231.
[16] DONALDSON L A. Within-and between-tree variation in micorifibril angle in Pinus radiada[J]. New Zealand Journal Science, 1992, 22(1): 77-86.
[17] STUART S, EVANS R. X-ray diffraction estimation of microfibril angle variation in eucalypt wood[J]. Appita, 1994, 48(3): 197-200.
[18] BONHAM V A, BARNATT J R. Fiber length and microfibril angle in silver birch[J]. Holzforschung, 2001, 55(2): 159-162. DOI:10.1515/hf.2001.026.
[19] FANG S, YANG W, TIAN Y. Clonal and within-tree variation in microfibril angle in poplar clones[J]. New Forests, 2006, 31:373-383. DOI:10.1007/s11056-005-8679-7.
[20] 洑香香,杨文忠,方升佐. 林木微纤丝角研究的现状和发展趋势[J]. 南京林业大学学报(自然科学版),2002, 26(6): 83-87. DOI:10.3969/j.jssn.1000-2006.2002.06.021. FU X X, YANG W Z, FANG S Z. Current situations, progress and prospects on the microfibril angle research of trees[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2002, 26(6): 83-87.
[21] DONALDSON L A, BURDON R D. Clonal variation and repeatability of microfibril angle in Pinus radiata[J]. New Zealand Journal of Forestry Science, 1995, 25(2): 164-174.

Last Update: 2018-06-06