我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

常见绿化树种对土壤碳氮垂直分布及有机碳储量的影响(PDF)

《南京林业大学学报(自然科学版)》[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018年03期
Page:
153-158
Column:
研究论文
publishdate:
2018-05-15

Article Info:/Info

Title:
Effects of common urban tree species on vertical distribution of soil carbon & nitrogen and organic carbon storage
Article ID:
1000-2006(2018)03-0153-06
Author(s):
YUAN Zaixiang1 JIN Xuemei1 ZHAI Kaiyan1 CHEN Bin1 GUAN Qingwei1* XU Jianfeng2
1. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; 2.Taicang Forestry Station of Jiangsu Province, Taicang 215400, China
Keywords:
Keywords:Metasequoia glyptostroboides Cinnamomum camphora Bischofia polycarpa farmland soil organic carbon total nitrogen
Classification number :
S714; S154.4
DOI:
10.3969/j.issn.1000-2006.201706016
Document Code:
A
Abstract:
Abstract: 【Objective】 This study aimed to evaluate the effects of urban tree species on the vertical distribution of carbon and nitrogen and soil organic carbon storage, generating basic data for use in the selection of urban tree species in afforestation.【Method】 Soil organic carbon(SOC)and total nitrogen(TN)contents, as well as SOC storage at different soil depths were determined under urban monoculture stands of three tree species(i.e., Metasequoia glyptostroboides, Cinnamomum camphora and Bischofia polycarpa). These indices were compared with those of the nearby farmland.【Result】① SOC and TN contents under tree stands were species specific, they varied from 7.28 to 10.78 g/kg and from 1.03 to 1.43 g/kg, respectively, and were significantly higher under B. polycarpa stand than that under M. glyptostroboides and C. camphora stands. Throughout the three stands, soil C/N ratio varied from 4.78 to 9.56, and significantly differed between M. glyptostroboides and B. polycarpa. ② SOC storage was also species specific, ranging from 60.54 to 89.61 t/hm2 among the stands(B. polycarpa > C. camphora > M. glyptostroboides). ③ There was a significantly positive correlation between SOC and TN contents at all sites. In addition, SOC and TN contents were significantly positively correlated with clay content, but negatively correlated with soil bulk density. ④ SOC content, TN content and SOC storage were significantly lower under M. glyptostroboides, C. camphora and B. polycarpa stands compared to those in the farmland; the soil C/N ratio was significantly different between the tree stands and the farmland in the 7th year after afforestation. Compared to that under M. glyptostroboides stand, the soil C/N ratio value under C. camphora and B. polycarpa stands, was much closer to that under farmland.【Conclusion】 Overall, the SOC and TN contents, as well as SOC storage decreased at different rates during the early period of conversion of farmland to forest. This study showed that B. polycarpa, a broadleaf tree species, is more suitable for the early recovery and sequestration of SOC in response to land use change, compared with other urban species.

References

[1] SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Science Society of America Journal, 2002, 66(6): 1981-1987. DOI: 10.2136/sssaj2002.1981.
[2] HUANG L, LIU J, SHAO Q, et al. Carbon sequestration by forestation across China: past, present, and future[J]. Renewable and Sustainable Energy Reviews, 2012, 16(2): 1291-1299. DOI: 10.1016/j.rser.2011.10.004.
[3] 王薪琪, 王传宽, 韩轶. 树种对土壤有机碳密度的影响: 5 种温带树种同质园试验[J]. 植物生态学报, 2015, 39(11): 1033-1043. DOI: 10.17521/cjpe.2015.0100. WANG X Q, WANG C K, HAN Y. Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species[J]. Chinese Journal of Plant Ecology, 2015, 39(11): 1033-1043.
[4] GUMESA G A, SCHMIDT I K, GUNDERSEN P, et al. Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens[J]. Forest Ecology and Management, 2013, 309(12): 47-57. DOI: 10.1016/j.foreco.2013.02.015.
[5] VESTERDAL L, CLARKE N, SIGURDSSON B D, et al. Do tree species influence soil carbon stocks in temperate and boreal forests?[J]. Forest Ecology and Management, 2013, 309(12):4-18. DOI: 10.1016/j.foreco.2013.01.017.
[6] 王成, 彭镇华. 关于城市绿化建设中增加生物多样性问题[J]. 城市发展研究, 2004, 11(3): 32-36. DOI: 10.3969/j.issn.1006-3862.2004.03.007. WANG C, PENG Z H. Discuss on increasing biodiversity in urban greening[J].Urban Studies, 2004, 11(3): 32-36.
[7] 王会霞, 石辉, 李秧秧. 城市绿化植物叶片表面特征对滞尘能力的影响[J]. 应用生态学报, 2010, 21(12): 3077-3082. DOI: 10.13287/j.1001-9332.2010.0432. WANG H X, SHI H, LI Y Y. Relationships between leaf surface characteristics and dust-capturing capability of urban greening plant species[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3077-3082.
[8] 巴成宝, 梁冰, 李湛东. 城市绿化植物减噪研究进展[J]. 世界林业研究, 2012, 25(5): 40-46. DOI: 10.13348/j.cnki.sjlyyj.2012.05.012. BA C B, LIANG B, LI Z D. Research progress of noise reduction by urban greening plants[J]. World Forestry Research, 2012, 25(5): 40-46.
[9] 王光华. 北京森林植被固碳能力研究[D]. 北京: 北京林业大学, 2012. WANG G H. Carbon sequestrationcapability of forest vegetation in Beijing[D]. Beijing: Beijing Forestry University, 2012.
[10] 葛之葳, 周丹燕, 郝雨杉, 等. 徐州城市绿地乔木层碳储量现状分析[J]. 林业科技开发, 2013, 27(6): 30-34. DOI: 10.3969/j.issn.1000-8101.2013.06.008. GE Z W, ZHOU D Y, HAO Y S, et al. Analysis on the present carbon stocks of the arbors layer in urban green spaces in Xuzhou[J]. China Forestry Science and Technology, 2013, 27(6): 30-34.
[11] VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species[J]. Forest Ecology and Management, 2008, 255(1): 35-48. DOI: 10.1016/j.foreco.2007.08.015.
[12] DE VRIES W I M, REINDS G J, GUNDERSEN P E R, et al. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils[J]. Global Change Biology, 2006, 12(7): 1151-1173. DOI: 10.1111/j.1365-2486.2006.01151.x.
[13] WANG X, WANG J, ZHANG J. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China[J]. PloS One, 2012, 7(8): e44334. DOI: 10.1371/journal.pone.0044334.
[14] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 2015, 35(16): 5421-5429. DOI: 10.5846/stxb201311032655. WANG D, GENG Z C, SHE D, et al. Soil organic carbon storage and vertical distribution of carbon and nitrogen across different forest types in the Qinling Mountains[J]. Acta Ecologica Sinica, 2015, 35(16): 5421-5429.
[15] SPRINGOB G, KIRCHMANN H. Bulk soil C to N ratio as a simple measure of net N mineralization from stabilized soil organic matter in sandy arable soils[J]. Soil Biology and Biochemistry, 2003, 35(4): 629-632. DOI: 10.1016/S0038-0717(03)00052-X.
[16] 许晓静. 不同环境下几种园林树木落叶分解及N、P动态的研究[D]. 合肥: 安徽农业大学, 2007. XU X J. Leaf litter decomposition and N, P dynamics of several urban trees in different environments[D]. Hefei: Anhui Agricultural University, 2007.
[17] RASSE D P, RUMPEL C, DIGNAC M F.Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil, 2005, 269(1-2): 341-356. DOI: 10.1007/s11104-004-0907-y.
[18] 张小全, 吴可红. 森林细根生产和周转研究[J]. 林业科学, 2001, 37(3):126-138. DOI: 10.3321/j.issn:1001-7488.2001.03.021. ZHANG X Q, WU K H. Fine-root production and turnover for forest ecosystems[J]. Scientia Silvae Sinicae, 2001, 37(3):126-138.
[19] 刘艳, 汪思龙, 王晓伟, 等. 不同温度条件下杉木、桤木和火力楠细根分解对土壤活性有机碳的影响[J]. 应用生态学报, 2007, 18(3): 481-486. DOI: 10.3321/j.issn:1001-9332.2007.03.003. LIU Y, WANG S L, WANG X W, et al. Effects of tree species fine root decomposition on soil active organic carbon [J]. Chinese Journal of Applied Ecology, 2007, 18(3): 481-486.
[20] 陈龙池, 廖利平, 汪思龙, 等. 根系分泌物生态学研究[J]. 生态学杂志, 2002, 21(6): 57-62. DOI: 10.3321/j.issn:1000-4890.2002.06.013. CHEN L C, LIAO L P, WANG L S, et al. A review for research of root exudates ecology[J]. Chinese Journal of Ecology, 2002, 21(6): 57-62.
[21] 王姣龙, 谌小勇, 闫文德, 等. 4种绿化树种根系分泌物中的化学成分分析[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10): 107-113. DOI: 10.13207/j.cnki.jnwafu.2016.10.015. WANG J L, CHEN X Y, YAN W D, et al. Chemical components of root exudates from four urban greening tree species[J]. Journal of Northwest A&F University(Natural Science Edition), 2016, 44(10): 107-113.
[22] 张春华, 王宗明, 居为民, 等. 松嫩平原玉米带土壤碳氮比的时空变异特征[J]. 环境科学, 2011, 32(5): 1407-1414. DOI: 10.13227/j.hjkx.2011.05.014. ZHANG C H, WANG Z M, JU W M, et al. Spatial and temporal variability of soil C/N ratio in Songnen Plain maize belt [J]. Environmental Science, 2011, 32(5): 1407-1414.
[23] WANG H, LIU S R, MO J M, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China[J]. Ecological Research, 2010, 25(6): 1071-1079. DOI: 10.1007/s11284-010-0730-2.
[24] 史利江, 郑丽波, 梅雪英, 等. 上海市不同土地利用方式下的土壤碳氮特征[J]. 应用生态学报, 2010, 21(9): 2279-2287. DOI: 10.13287/j.1001-9332.2010.0325. SHI L J, ZHENG L B, MEI X Y, et al. Characteristics of soil organic carbon and total nitrogen under different land use types in Shanghai[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2279-2287.
[25] 王春梅, 刘艳红, 邵彬,等. 量化退耕还林后土壤碳变化[J]. 北京林业大学学报, 2007, 29(3):112-119. DOI: 10.3321/j.issn:1000-1522.2007.03.018. WANG C M, LIU Y H, SHAO B, et al. Quantifying the soil carbon changes following the afforestation of former arable land[J]. Journal of Beijing Forestry University, 2007, 29(3):112-119.
[26] SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2): 155-176. DOI: 10.1023/A:1016125726789.

Last Update: 2018-06-06