我们的网站为什么显示成这样?

可能因为您的浏览器不支持样式,您可以更新您的浏览器到最新版本,以获取对此功能的支持,访问下面的网站,获取关于浏览器的信息:

|Table of Contents|

Effects of thinning on nitrogen contents and enzyme activities of rhizosphere soil in Pinus massoniana plantations(PDF)

Journal of Nanjing Forestry University(Natural Science Edition)[ISSN:1000-2006/CN:32-1161/S]

Issue:
2018 03
Page:
193-198
Column:
publishdate:
2018-05-15

Article Info:/Info

Title:
Effects of thinning on nitrogen contents and enzyme activities of rhizosphere soil in Pinus massoniana plantations
Article ID:
1000-2006(2018)03-0193-06
Author(s):
YE Yuqian ZHAO Jiahao LIU Chang GUAN Qingwei*
Co-Innovation Center of the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
Keywords:
Keywords:thinning intensity Pinus massoniana plantation rhizosphere soil soil nitrogen content enzyme activitiy rhizosphere effect
Classification number :
S718.5
DOI:
10.3969/j.issn.1000-2006.201709026
Document Code:
A
Abstract:
Abstract: 【Objective】The aim of this study was to investigate the effects of thinning intensity on soil nitrogen content and the soil nitrogen-cycle enzyme activities in the rhizosphere soil of Pinus massoniana plantations, which could provide reference data for the sustainable management of P. massoniana plantations.【Method】Soil samples were collected from the rhizosphere of P. massoniana plantations, which were thinned at different intensities(control(CK), 0%; light intensity thinning(LIT), 25%; moderate intensity thinning(MIT), 45%; and heavy intensity thinning(HIT), 65%), to study the effect of thinning on soil nitrogen, and to assess the associations among soil nitrogen, enzyme activities, and physicochemical properties.【Result】 Compared to that in CK, ammonium nitrogen content of rhizosphere soil was significantly increased in LIT, but was decreased in HIT. The total nitrogen, nitrate nitrogen, and dissolved organic nitrogen contents of rhizosphere soil were in the order of MIT>CK>LIT>HIT. Both microbial biomass nitrogen and alkali-hydrolyzable nitrogen contents of rhizosphere soil increased in LIT and MIT. LIT and MIT significantly decreased urease activity of rhizosphere soil, but increased the nitrite reductase activity. The effects of thinning on soil protease, nitrate reductase, and hydroxylamine reductase activities were not significant, indicating that urease and nitrite reductase are more sensitive to thinning, and may serve as indicators of soil nitrogen dynamics. In addition to nitrate reductase activity, the other four nitrogen-cycle enzyme activities and the nitrogen content of rhizosphere soil were higher than those of the bulk soil, indicating a positive rhizosphere effect. Moreover, soil nitrogen content and enzyme activities were closely correlated with the soil water content and pH.【Conclusion】Thinning had significant effects on soil nitrogen content by changing soil water content and enzyme activities. We recommend LIT and MIT as efficient management practices for improving the efficiency of soil nitrogen use in P. massoniana plantations.

References

[1] ZHU J J, YANG K, YAN Q L, et al. Feasibility of implementing thinning in even-aged Larix olgensis plantations to develop uneven-aged larch-broadleaved mixed forests [J]. Journal of Forest Research, 2010, 15:71-80. DOI: 10.1007/s10310-009-0152-6.
[2] COULOMBE D, SIROIS L, PARE D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal-temperate interface [J]. Canadian Journal of Forest Research, 2017, 47:308-318. DOI: 10.1139/cjfr-2016-0301.
[3] ADAMCZYK S, KITUNEN V, LINDROOS A J, et al. Soil carbon and nitrogen cycling processes and composition of terpenes five years after clear-cutting a Norway spruce stand: effects of logging residues [J]. Forest Ecology and Management, 2016, 381:318-326. DOI: 10.1016/j.foreco.2016.09.034.
[4] KAARAKKA L, HYVÖNEN R, STRÖMGREN M, et al. Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting [J]. Forest Ecology and Management, 2016, 377:61-70. DOI: 10.1016/j.foreco.2016.06.042.
[5] BECKER H, AOSAAR J, VSRIK M, et al. The effect of Norway spruce stump harvesting on net nitrogen mineralization and nutrient leaching [J]. Forest Ecology and Management, 2016, 377:150-160. DOI: 10.1016/j.foreco.2016.07.005.
[6] 郝俊鹏. 间伐对马尾松人工林土壤酶活性的影响 [D]. 南京: 南京林业大学, 2012. HAO J P. Effects of thinning on soil enzyme activities in Pinus massoniana Lamb[D]. Nanjing: Nanjing Forestry University, 2012.
[7] 李建平, 欧江, 宋小艳, 等. 马尾松人工林林窗土壤有效氮和氮转化酶活性的季节动态 [J]. 生态学杂志, 2015, 34(9):2598-2604. DOI: 10.13292/j.1000-4890.2015.0235. LI J P, OU J, SONG X Y, et al. Seasonal variations of soil available nitrogen and nitrogen transformation enzyme activities in forest gaps of Pinus massoniana plantations [J]. Chinese Journal of Ecology, 2005, 34(9):2598-2604.
[8] TOBERMAN H, CHEN C R, XU Z H. Rhizosphere effects on soil nutrient dynamics and microbial activity in an Australian tropical lowland rainforest [J]. Soil Research, 2011, 49(7):652-660. DOI: 10.1071/SR11202.
[9] YAKOV K. Priming effects: interactions between living and dead organic matter [J]. Soil Biology and Biochemistry, 2010, 42(9):1363-1371. DOI: 10.1016/j.soilbio.2010.04.003.
[10] FU S, CHENG W. Defoliation affects rhizosphere respiration and rhizosphere priming effect on decomposition of soil organic matter under a sunflower species: Helianthus annuus [J]. Plant and Soil, 2004, 263(1):345-352. DOI: 10.1023/B:PLSO.0000047745.30929.32
[11] RILEY D, BARBER S A. Bicarbonate accumulation and pH changes at the soybean root-soil interface [J]. Soil Science Society of America Journal, 1969, 33: 905-908. DOI: 10.2136/sssaj1969.03615995003300060031x.
[12] 吴金水. 土壤微生物生物量测定方法及其应用 [M]. 北京: 气象出版社, 2000.
[13] 武志杰, 隽英华, 陈利军, 等. 一种检测土壤硝酸还原酶活性的分析方法: 中国, 200710010680.5[P]. 2007.
[14] 鲁如坤. 土壤农业化学分析方法 [M]. 北京:中国农业科技出版社, 1999.
[15] GÖMÖRYOVÁ E, HRIVNÁK R, JANIOVÁ M, et al. Changes of the functional diversity of soil microbial community during the colonization of abandoned grassland by a forest [J]. Applied Soil Ecology, 2009, 43:191-199. DOI: 10.1016/j.apsoil.2009.07.007.
[16] 鞠敏睿. 小兴安岭森林土壤氮形态研究 [D]. 哈尔滨: 东北林业大学, 2010. JU M R. Soil nitrogen form of Xiaoxing'anling Forest [D]. Harbin: Northeast Forestry University, 2010.
[17] 詹媛媛, 薛梓瑜, 任伟, 等. 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征 [J]. 生态学报, 2009, 29(1):59-66. DOI: 10.3321/j.issn:1000-0933.2009.01.008. ZHAN Y Y, XUE Z Y, REN W, et al. Characteristics of nitrogen content between rhizopshere and bulk soil underseven shrubs in arid desert area of China [J]. Acta Ecologica Sinica, 2009, 29(1):59-66.
[18] 李瑞霞. 间伐对马尾松细根生物量、形态和碳氮含量的影响 [D]. 南京: 南京林业大学, 2014. LI R X. Fine root biomass, morphology, and C and N concentration response to thinning in a Pinus massoniana plantation[D]. Nanjing: Nanjing Forestry University, 2014.
[19] 翟凯燕. 间伐对马尾松人工林土壤活性有机碳的影响 [D]. 南京: 南京林业大学, 2016. ZHAI K Y. Effects of thinning intensity on soil active organic carbon in Pinus massoniana Plantation [D]. Nanjing: Nanjing Forestry University, 2016.
[20] BAI S H, DEMPSEY R, REVERCHON F, et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics [J]. Plant Soil, 2017, 411:437-449. DOI: 10.1007/s11104-016-3052-5.
[21] 杨育林. 疏伐对低效柏木人工林生态支持功能的影响 [D]. 成都: 四川农业大学, 2015. YANG Y L. Effects of thinning on support function with inefficient cypress plantation [D]. Chengdu: Sichuan Agriculture University, 2015.
[22] URAKAWA R, OHTE N, SHIBATA H, et al. Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago [J]. Forest Ecology and Management, 2016, 361:382-396. DOI: 10.1016/j.foreco.2015.11.033.
[23] 莫江明, 郁梦德, 孔国辉. 鼎湖山马尾松人工林土壤硝态氮和铵态氮动态研究 [J]. 植物生态学报, 1997, 21(4):335-341. DOI: 10.3321/j.issn:1005-264X.1997.04.006 MO J M, YU M D, KONG G H. The dynamics of soil NH+4-N and NO-3-N in pine forest of Dinghushan, as assessed by ion exchange resin bag method [J]. Acta Phytoecologica Sinica, 1997, 21(4):335-341.
[24] 张亚亚, 李军, 郭颖, 等. 土壤可溶性有机氮的研究进展 [J]. 生态学杂志, 2016, 35(6):1661-1669. DOI: 10.13292/j.1000-4890.201606.004. ZHANG Y Y, LI J, GUO Y, et al. Soluble organic nitrogen in soil: A review [J]. Chinese Journal of Ecology, 2016, 35(6):1661-1669.
[25] 马婷瑶. 间伐对马尾松人工林土壤氧化亚氮释放通量的影响 [D]. 南京: 南京林业大学, 2016. MA T Y. Effect of thinning on soil nitrous oxide fluxes in Pinus massoniana plantation[D]. Nanjing: Nanjing Forestry University, 2016.
[26] ZAMAN M, CHANG S X. Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems [J]. Biology Fertilize Soils, 2004, 39:269-279. DOI: 10.1007/s00374-003-0716-0.
[27] 赵路红, 李昌珍, 康迪, 等. 黄土丘陵区植被恢复对土壤可溶性氮组分的影响 [J]. 生态学报, 2017, 37(10):1-10. DOI: 10.5846/stxb201603090416. ZHAO L H, LI C Z, KANG D, et al. Effect of vegetation restoration on soil soluble nitrogen in the Loess Hilly Region [J]. Acta Ecologica Sinica, 2017, 37(10):1-10.
[28] BOLAT I. The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey[J]. European Journal of Forest Research, 2014, 133:131-139. DOI: 10.1007/s10342-013-0752-8.
[29] 陈信力. 间伐对杉木人工林土壤微生物活性及其功能多样性的影响 [D]. 南京: 南京林业大学, 2014. CHEN X L. Thinning intensity effect on soil microbial activity and functional diversity in Chinese fir plantation [D]. Nanjing: Nanjing Forestry University, 2014.

Last Update: 2018-06-06